当前位置:高中试题 > 数学试题 > 圆锥曲线性质探讨 > 如图所示,锐角三角形ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为圆I与边CA的切点.(1)求证A,I,H,E四点共圆;(2)若∠C=50°,求∠I...
题目
题型:不详难度:来源:
如图所示,锐角三角形ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为圆I与边CA的切点.

(1)求证A,I,H,E四点共圆;
(2)若∠C=50°,求∠IEH的度数.
答案
(1)见解析   (2) 25°
解析

解:(1)由圆I与AC相切于点E得IE⊥AC,结合HI⊥AH,得∠AEI=∠AHI=90°,所以A,I,H,E四点共圆.
(2)由(1)知A,I,H,E四点共圆,所以∠IEH=∠HAI.由题意知∠HIA=∠ABI+∠BAI=∠ABC+∠BAC=(∠ABC+∠BAC)=(180°-∠C)=90°-∠C,结合IH⊥AH,得∠HAI=90°-∠HIA=90°-(90°-∠C)=∠C,所以∠IEH=∠C.由∠C=50°得∠IEH=25°.
核心考点
试题【如图所示,锐角三角形ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为圆I与边CA的切点.(1)求证A,I,H,E四点共圆;(2)若∠C=50°,求∠I】;主要考察你对圆锥曲线性质探讨等知识点的理解。[详细]
举一反三
如图,AE是圆O的切线,A是切线,,割线EC交圆O于B,C两点.

(1)证明:O,D,B,C四点共圆;
(2)设,求的大小.
题型:不详难度:| 查看答案
如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.

(1)证明:B,D,H,E四点共圆;
(2)证明:CE平分∠DEF.
题型:不详难度:| 查看答案
如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5。

求:(1)⊙O的半径;
(2)s1n∠BAP的值。
题型:不详难度:| 查看答案
已知圆O的半径为3,从圆O外一点A引切线AD和割线ABC,圆心OAC的距离为2AB=3,则切线AD的长为__________.

题型:不详难度:| 查看答案
如图,圆的弦ED,CB的延长线交于点A,若BDAE,AB=4,BC=2,AD=3,则CE=      ;

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.