当前位置:高中试题 > 数学试题 > 合情推理与演译推理 > 类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是______.①各棱长相等,同一顶点上的任两条棱的夹角都相等...
题目
题型:不详难度:来源:
类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是______.
①各棱长相等,同一顶点上的任两条棱的夹角都相等;
②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;
③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.
答案
在由平面几何的性质类比推理空间立体几何性质时,我们常用的思路是:
由平面几何中点的性质,类比推理空间几何中线的性质;
由平面几何中线的性质,类比推理空间几何中面的性质;
由平面几何中面的性质,类比推理空间几何中体的性质;
或是将一个二维平面关系,类比推理为一个三维的立体关系,
故类比平面内正三角形的“三边相等,三内角相等”的性质,推断:
①各棱长相等,同一顶点上的任两条棱的夹角都相等;
②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;
③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.
都是恰当的
故答案为:①②③
核心考点
试题【类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是______.①各棱长相等,同一顶点上的任两条棱的夹角都相等】;主要考察你对合情推理与演译推理等知识点的理解。[详细]
举一反三
已知一个命题P(k),k=2n(n∈N),若n=1,2,…,1000时,P(k)成立,且当n=1000+1时它也成立,下列判断中,正确的是(  )
A.P(k)对k=2013成立
B.P(k)对每一个自然数k成立
C.P(k)对每一个正偶数k成立
D.P(k)对某些偶数可能不成立
题型:不详难度:| 查看答案
甲乙两人至少有一个是三好学生是指(  )
A.甲是三好学生,或乙是三好学生
B.甲乙两人都是三好学生
C.甲乙两人至多有一个是三好学生
D.甲乙两人都不是三好学生
题型:不详难度:| 查看答案
空间有三组平行平面,第一组有5个,第二组有4个,第三组有3个.不同两组的平面都相交,且交线不都平行,则可构成平行六面体的个数为______.
题型:不详难度:| 查看答案
对于平面几何中的命题:“夹在两条平行线这间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:“______”,这个类比命题的真假性是______.
题型:不详难度:| 查看答案
归纳推理与类比推理的相似之处为(  )
A.都是从一般到一般B.都是从一般到特殊
C.都是从特殊到特殊D.都不一定正确
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.