当前位置:高中试题 > 数学试题 > 合情推理与演译推理 > 对大于或等于2的自然数m的n次方幂有如下分解方式:22=1+332=1+3+542=1+3+5+723=3+533=7+9+1143=13+15+17+19,根...
题目
题型:不详难度:来源:
对大于或等于2的自然数m的n次方幂有如下分解方式:22=1+332=1+3+542=1+3+5+723=3+533=7+9+1143=13+15+17+19,根据上述分解规律,若m3(m∈N*)的分解中含有数35,则m的值为______.
答案
由题意,从23到m3,正好用去从3开始的连续奇数共2+3+4+…+m=
(m+2)(m-1)
2
个,
35是从3开始的连续奇数中的第17个奇数,
而从23到53,用去从3开始的连续奇数共
(5+2)(5-1)
2
=14个,
故63的分解式中第一个奇数为31,第二个奇数为33,第三个奇数是35,…,且共有6个连续奇数相加,
即63=31+35+37+39+41.
故答案为:6.
核心考点
试题【对大于或等于2的自然数m的n次方幂有如下分解方式:22=1+332=1+3+542=1+3+5+723=3+533=7+9+1143=13+15+17+19,根】;主要考察你对合情推理与演译推理等知识点的理解。[详细]
举一反三
已知平面α经过点A(1,1,1),且


n
=(1,2,3)
是它的一个法向量.类比曲线方程的定义以及求曲线方程的基本步骤,可求得平面α的方程是______.
题型:不详难度:| 查看答案
对大于或等于2的自然数m的n次方幂有如下分解方式:
22=1+3
32=1+3+5
42=1+3+5+7
23=3+5
33=7+9+11
43=13+15+17+19
根据上述分解规律,63的分解式为63=______.
题型:不详难度:| 查看答案
等差数列{an}中,公差为d,前n项的和为Sn,有如下性质:
(1)通项an=am+(n-m)d;
(2)若m+n=p+q,m、n、p、q∈N*,则am+an=ap+aq
(3)若m+n=2p,则am+an=2ap
(4)Sn,S2n-Sn,S3n-S2n构成等差数列.
请类比出等比数列的有关性质.
题型:不详难度:| 查看答案
在圆x2+y2=r2(r>0)中,AB为直径,C为圆上异于A,B的任意一点,则有kAC•kBC=-1.你能用类比的方法得出椭圆
x2
a2
+
y2
b2
=1(a>b>0)中有什么样的结论?并加以证明.
题型:不详难度:| 查看答案
下列是关于复数的类比推理:
①复数的加减法运算可以类比多项式的加减法运算法则;
②由实数绝对值的性质|x|2=x2类比得到复数z的性质|z|2=z2
③已知a,b∈R,若a-b>0,则a>b.类比得已知z1,z2∈C,若z1-z2>0,则z1>z2
④由向量加法的几何意义可以类比得到复数加法的几何意义.
其中推理结论正确的是______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.