当前位置:高中试题 > 数学试题 > 合情推理与演译推理 > 已知命题:平面上一矩形ABCD的对角线AC与边AB和AD所成角分别为α、β,则cos2α+cos2β=1.若把它推广到空间长方体中,试写出相应的命题形式:___...
题目
题型:不详难度:来源:
已知命题:平面上一矩形ABCD的对角线AC与边AB和AD所成角分别为α、β,则cos2α+cos2β=1.若把它推广到空间长方体中,试写出相应的命题形式:______.
答案
我们将平面中的两维性质,类比推断到空间中的三维性质.
由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,
则有cos2α+cos2β=1,
我们根据平面性质可以类比推断出空间性质,
即在长方体中,一条对角线与从某一顶点出发的三条棱所成的角分别是α,β,γ,
则有cos2α+cos2β+cos2γ=1.
故选Cos2α+cos2β+cos2γ=1
核心考点
试题【已知命题:平面上一矩形ABCD的对角线AC与边AB和AD所成角分别为α、β,则cos2α+cos2β=1.若把它推广到空间长方体中,试写出相应的命题形式:___】;主要考察你对合情推理与演译推理等知识点的理解。[详细]
举一反三
观察下列各式:
cos
π
3
=
1
2

cos
π
5
cos
5
=
1
4

cos
π
9
cos
9
cos
9
=
1
8

cos
π
17
cos
17
cos
17
cos
17
=
1
16

归纳推出一般结论为______.
题型:不详难度:| 查看答案
将侧棱相互垂直的三棱锥称为“直角三棱锥”,三棱锥的侧面和底面分别称为直角三棱锥的“直角面和斜面”;过三棱锥顶点及斜面任两边中点的截面均称为斜面的“中面”.请仿照直角三角形以下性质:
(1)斜边的中线长等于斜边边长的一半;
(2)两条直角边边长的平方和等于斜边边长的平方;
(3)斜边与两条直角边所成角的余弦平方和等于1.
写出直角三棱锥的相应性质(至少一条):______.
题型:不详难度:| 查看答案
由“等腰三角形的两腰相等”可以类比推出正棱锥的类似属性是______.
题型:不详难度:| 查看答案
在f(m,n)中,m,n,f(m,n)∈N*,且对任何m,n都有:
(Ⅰ)f(1,1)=1,
(Ⅱ)f(m,n+1)=f(m,n)+2,
(Ⅲ)f(m+1,1)=2f(m,1).
给出下列三个结论:
①f(1,5)=9;  ②f(5,1)=16;   ③f(5,6)=26.
其中正确的结论个数是(  )个.
A.3B.2C.1D.0
题型:不详难度:| 查看答案
下面给出的类比推理命题中,结论正确的序号是______
①“若a•3=b•3,则a=b”类比推出“若a•0=b•0,则a=b”;
②“若(a+b)c=ac+bc”类比推出“
a+b
c
=
a
c
+
b
c
(c≠0)”;
③“a,b∈R,若a-b=0,则a=b”类比推出“a,b∈C,a-b=0,则a=b”(C为复数集);
④“a,b∈R,若a-b>0,则a>b”类比推出“a,b∈C,若a-b>0,则a>b”(C为复数集);
⑤“圆的周长c=πd”类比推出“球的表面积s=πd2”;
⑥“三角形的三条内角平分线交于一点”类比推出“四面体的六个二面角的平分面交于一条直线”.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.