当前位置:高中试题 > 数学试题 > 合情推理与演译推理 > 已知数列{an}满足a1=1,an+an+1=(14)n(n∈N+),Sn=a1+4a2+42a3+…+4n-1an,类比课本中推导等比数列前n项和公式的方法,...
题目
题型:不详难度:来源:
已知数列{an}满足a1=1,an+an+1=(
1
4
)n
(n∈N+),Sn=a1+4a2+42a3+…+4n-1an,类比课本中推导等比数列前n项和公式的方法,可求得5Sn-4nan=(  )
A.
n
2
B.nC.n+1D.n-1
答案
由Sn=a1+a2•4+a3•42+…+an•4n-1
得4•sn=4•a1+a2•42+a3•43+…+an-1•4n-1+an•4n
①+②得:5sn=a1+4(a1+a2)+42•(a2+a3)+…+4n-1•(an-1+an)+an•4n
=a1+4×
1
4
+42•(
1
4
2+…+4 n-1•(
1
4
n-1+4n•an
=1+1+1+…+1+4n•an
=n+4n•an
所以5sn-4n•an=n.
故选B.
核心考点
试题【已知数列{an}满足a1=1,an+an+1=(14)n(n∈N+),Sn=a1+4a2+42a3+…+4n-1an,类比课本中推导等比数列前n项和公式的方法,】;主要考察你对合情推理与演译推理等知识点的理解。[详细]
举一反三
给出数表:
2456
9131822
27303545
48505254
请在其中找出4个不同的数,使它们从小到大能构成等比数列,这4个数依次可以是______.
题型:不详难度:| 查看答案
在平面直角坐标系中,我们称边长为1、且顶点的横、纵坐标均为整数的正方形为单位格点正方形.如图,在菱形ABCD中,四个顶点坐标分别是(-8,0),(0,4),(8,0),(0,-4),则菱形ABCD能覆盖的单位格点正方形的个数是______个;若菱形AnBnCnDn的四个顶点坐标分别为(-2n,0),(0,n),(2n,0),(0,-n)(n为正整数),则菱形AnBnCnDn能覆盖的单位格点正方形的个数为______(用含有n的式子表示).
题型:不详难度:| 查看答案
在Rt△ABC中,CA⊥CB,斜边AB上的高为h1,则
1
h21
=
1
CA2
+
1
CB2
;类比此性质,如图,在四面体P-ABC中,若PA,PB,PC两两垂直,底面ABC上的高为h,则得到的正确结论为______.
题型:不详难度:| 查看答案
如图,对于大于1的自然数m的n次幂可用奇数进行如图所示的“分裂”,仿此,记53的“分裂”中的最小数为a,而52的“分裂”中最大的数是b,则a+b=______.
题型:不详难度:| 查看答案
下面给出了四个类比推理:
(1)由“若a,b,c∈R则(ab)c=a(bc)”类比推出“若a,b,c为三个向量则(


a


b
)•


c
=


a
•(


b


c
)”;
(2)“a,b为实数,若a2+b2=0则a=b=0”类比推出“z1,z2为复数,若
z21
+
z22
=0则z1=z2=0
”;
(3)“在平面内,三角形的两边之和大于第三边”类比推出“在空间中,四面体的任意三个面的面积之和大于第四个面的面积”;
(4)“在平面内,过不在同一条直线上的三个点有且只有一个圆”类比推出“在空间中,过不在同一个平面上的四个点有且只有一个球”.
上述四个推理中,结论正确的个数有(  )
A.1个B.2个C.3个D.4个
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.