当前位置:高中试题 > 数学试题 > 合情推理与演译推理 > 古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1...
题目
题型:不详难度:来源:
古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:

他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数。下列数中既是三角形数又是正方形数的是(     )
A.289B.1024C.1225D.1378

答案
C
解析

试题分析:根据图形观察归纳猜想出两个数列的通项公式,再根据通项公式的特点排除,即可求得结果.解:由图形可得三角形数构成的数列通项an= (n+1),同理可得正方形数构成的数列通项bn=n2,则由bn=n2(n∈N+)可排除D,又由an=(n+1),(n+1)=289与(n+1)=1024无正整数解,故选C
点评:考查学生观察、分析和归纳能力,并能根据归纳的结果解决分析问题,注意对数的特性的分析,属中档题
核心考点
试题【古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1】;主要考察你对合情推理与演译推理等知识点的理解。[详细]
举一反三
类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的一些性质:“各棱长相等,同一顶点上的两条棱的夹角相等;‚各个面都是全等的正三角形,相邻两个面所成的二面角相等;ƒ各个面都是全等的正三角形,同一顶点上的任何两条棱的夹角相等。你认为比较恰当的是           
题型:不详难度:| 查看答案
古希腊著名的毕达哥拉斯学派把1、3、6、10 这样的数称为“三角形数”,而把1、4、9、16 这样的数称为“正方形数”.如图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和,下列等式中,符合这一规律的表达式是    
①13=3+10; ②25=9+16   ③36=15+21;  ④49=18+31;⑤64=28+36
题型:不详难度:| 查看答案
给出下列等式:观察各式:
,则依次类推可得
           
题型:不详难度:| 查看答案
根据右边给出的数塔猜测1234569+8=(     )
A.1111110
B.1111111
C.1111112
D.1111113

题型:不详难度:| 查看答案
已知:

通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.