当前位置:高中试题 > 数学试题 > 向量求夹角 > 如图,在多面体ABCDA1E中,底面ABCD为正方形,AA1⊥平面ABCD,CE⊥平面ABCD,AA1=2AB=4,且CE=λAA1,A1C⊥平面BED。(1)...
题目
题型:模拟题难度:来源:
如图,在多面体ABCDA1E中,底面ABCD为正方形,AA1⊥平面ABCD,CE⊥平面ABCD,AA1=2AB=4,且CE=λAA1,A1C⊥平面BED。
(1)求λ的值;
(2)求二面角A1-BD-E的余弦值。
答案
解:(1)以D为坐标原点,射线DA为x轴的正半轴,射线DC为y轴的正半轴,过D作平行于AA1的射线Dz为z轴的正半轴,建立如图所示的空间直角坐标系D-xyz,
依题设知D(0,0,0),B(2,2,0), C(0,2,0),A1(2,0,4)




∵A1C⊥平面BED,
∴A1C⊥DE


(2)依题意可知是平面BED的一个法向量,
设向量n= (x,y,z)是平面DA1B的一个法向量

∴2x+2y=0,2x+4z=0,
令z=1,则x=-2,y=2,
∴n=(-2,2,1)
核心考点
试题【如图,在多面体ABCDA1E中,底面ABCD为正方形,AA1⊥平面ABCD,CE⊥平面ABCD,AA1=2AB=4,且CE=λAA1,A1C⊥平面BED。(1)】;主要考察你对向量求夹角等知识点的理解。[详细]
举一反三
如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,A1A=,M是CC1的中点,
(1)求证:A1B⊥AM;
(2)求二面角B-AM-C的平面角的大小.

题型:江苏模拟题难度:| 查看答案
如图,已知直四棱柱ABCD-A′B′C′D′中,四边形ABCD为正方形,AA′=2AB=2,E为棱CC′的中点,
(1)求证:A′E⊥平面BDE;
(2)设F为AD中点,G为棱BB′上一点,且BG=BB′,求证:FG∥平面BDE;
(3)在(2)的条件下求二面角G-DE-B的余弦值.

题型:安徽省模拟题难度:| 查看答案
如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为BC的中点。
(1)求异面直线NE与AM所成角的余弦值;
(2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由。
题型:福建省高考真题难度:| 查看答案
如图,以正四棱锥V-ABCD底面中心O为坐标原点建立空间直角坐标系O-xyz,其中Ox∥BC,Oy∥AB,E为VC中点,正四棱锥底面边长为2a,高为h,
(Ⅰ)求cos
(Ⅱ)记面BCV为α,面DCV为β,若∠BED是二面角α-VC-β的平面角,求cos∠BED的值。
题型:天津高考真题难度:| 查看答案
如图,已知点P在正方体ABCD-A′B′C′D′的对角线BD′上,∠PDA=60°,
(Ⅰ)求DP与CC′所成角的大小;
(Ⅱ)求DP与平面AA′D′D所成角的大小。

题型:海南省高考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.