当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 如图5(1)中矩形中,已知,, 分别为和的中点,对角线与交于点,沿把矩形折起,使平面与平面所成角为,如图5(2).(1)  求证:;(2)  求与平面所成角的正...
题目
题型:不详难度:来源:
如图5(1)中矩形中,已知, 分别为的中点,对角线交于点,沿把矩形折起,使平面与平面所成角为,如图5(2).
(1)  求证:
(2)  求与平面所成角的正弦值.
答案
(1)见解析;(2).
解析
本试题主要是考查了立体几何中的线线垂直的判定和线面所成角的正弦值的运用。
解:(1)由题设,M,N是矩形的边AD和BC的中点,所以AMMN, BCMN, 折叠垂直关系不变,所以∠AMD 是平面ABMN与平面MNCD的平面角,依题意,所以∠AMD=60o,……2分
由AM=DM,可知△MAD是正三角形,所以AD=,在矩形ABCD中,AB=2,AD=,所以,BD=,由题可知BO=OD=,由勾股定理可知三角形BOD是直角三角形,所以BO⊥DO
…………5分
解(2)设E,F是BD,CD的中点,则EFCD, OFCD, 所以,CD面OEF, OECD
又BO=OD,所以OEBD, OE面ABCD, OE面BOD, 平面BOD⊥平面ABCD
过A作AH⊥BD,由面面垂直的性质定理,可得AH⊥平面BOD,连结OH ,…………… 8分

所以OH是AO在平面BOD的投影,所以∠AOH为所求的角,即AO与平面BOD所成角。11分
AH是RT△ABD斜边上的高,所以AH=,BO=OD=
所以sin∠AOH=(14分)
方法二:空间向量:取MD,NC中点P,Q,如图建系,  

Q(0,0,0),B(,0,0),D(0,,2),O(0,,1
所以,1),(0,
所以0,即BO⊥DO(5分)
(2)设平面BOD的法向量是,可得xy+z=0
y-z=0,令可得所以
,-1),
设AO与平面BOD所成角为,jsin=|cos<>|==(14分)
核心考点
试题【如图5(1)中矩形中,已知,, 分别为和的中点,对角线与交于点,沿把矩形折起,使平面与平面所成角为,如图5(2).(1)  求证:;(2)  求与平面所成角的正】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
如图所示,圆柱底面的直径长度为为底面圆心,正三角形的一个顶点在上底面的圆周上,为圆柱的母线,的延长线交于点的中点为.

(1)  求证:平面⊥平面
(2)  求二面角的正切值.
题型:不详难度:| 查看答案
下列命题正确的是(  )
A.直线a、b互相异面,直线b、c相互异面,则直线a、c互相异面
B.直线a、b互相垂直,直线b、c互相垂直,则直线a、c也互相垂直
C.直线a、b互相平行,直线b、c互相平行,则直线a、c也互相平行
D.直线a、b相交,直线b、c也相交,则直线a、c也相交

题型:不详难度:| 查看答案
在棱长为1的正方体ABCD—A1B1C1D1中,点P是它的体对角线BD1上一动点,则|AP|+|PC|的最小值是_________
题型:不详难度:| 查看答案
如图,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中点O为球心、BD为直径的球面交PD于点M.
⑴求证:平面ABM⊥平面PCD;
⑵求直线PC与平面ABM所成角的正切值;
⑶求点O到平面ABM的距离.
题型:不详难度:| 查看答案
是两条不同的直线,是一个平面,则下列命题正确的是(    )
A.若,则B.若,则
C.若,则D.若,则

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.