当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 下面是空间线面位置关系中传递性的部分相关命题:①与两条平行线中一条平行的平面必与另一条直线平行;②与两条平行线中一条垂直的平面 必与另一条直线垂直;③与两条垂直...
题目
题型:不详难度:来源:
下面是空间线面位置关系中传递性的部分相关命题:
①与两条平行线中一条平行的平面必与另一条直线平行;
②与两条平行线中一条垂直的平面 必与另一条直线垂直;
③与两条垂直直线中一条平行的平面必与另一条直线垂直;
④与两条垂直直线中一条垂直的平面必与另一条直线平行;
⑤与两个平行平面中一个平行的直线必与另一个平面平行;
⑥与两个平行平面中一个垂直的直线必与另一个平面垂直;
⑦与两个垂直平面中一个平行的直线必与另一个平面垂直;
⑧与两个垂直平面中一个垂直的直线必与另一个平面平行.
其中正确的命题个数有________个.
答案
2
解析

试题分析:①另一条直线可能在平面内,①错;②线面垂直的性质,②正确;③与另一条直线可平行可相交,③错;④另一条直线可能在平面内,④错;⑤直线可能在另一个平面内,⑤错;⑥面面平行的性质,⑥正确;⑦直线与另一个平面的位置关系不确定,⑦错;⑧直线可能在另一个平面内,⑧错.
核心考点
试题【下面是空间线面位置关系中传递性的部分相关命题:①与两条平行线中一条平行的平面必与另一条直线平行;②与两条平行线中一条垂直的平面 必与另一条直线垂直;③与两条垂直】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
如图,直四棱柱ABCD-A1B1C1D1的底面ABCD为平行四边形,其中AB=, BD=BC=1, AA1=2,E为DC的中点,F是棱DD1上的动点.

(1)求异面直线AD1与BE所成角的正切值;
(2)当DF为何值时,EF与BC1所成的角为90°?
题型:不详难度:| 查看答案
如图,三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上动点,F是AB中点,AC = 1,BC = 2,AA1 = 4.

(Ⅰ)当E是棱CC1中点时,求证:CF∥平面AEB1
(Ⅱ)在棱CC1上是否存在点E,使得二面角A—EB1—B的余弦值是,若存在,求CE的长,若不存在,请说明理由.
题型:不详难度:| 查看答案
设a ,b是平面外的两条直线,给出下列
四个命题:①若a∥b ,a∥,则b∥
②若a∥b ,b 与相交,则a 与也相交;③若a∥,b∥,则a∥b ;④若a 与b 异面,a∥,则.则所有正确命题的序号是________.
题型:不详难度:| 查看答案
下列四个正方体图形中,为 正方体的两个顶点,分别为其所在棱的中点,能得出的图形的序号是______.

题型:不详难度:| 查看答案
如图所示,在正方体ABCD﹣A1B1C1D1中,棱长AB=1.

(Ⅰ)求异面直线A1B与 B1C所成角的大小;(Ⅱ)求证:平面A1BD∥平面B1CD1
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.