当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 如图,已知直角梯形所在的平面垂直于平面,,,.(Ⅰ)点是直线中点,证明平面;(Ⅱ)求平面与平面所成的锐二面角的余弦值....
题目
题型:不详难度:来源:
如图,已知直角梯形所在的平面垂直于平面

(Ⅰ)点是直线中点,证明平面
(Ⅱ)求平面与平面所成的锐二面角的余弦值.
答案
(Ⅰ)详见解析;(Ⅱ)平面与平面所成的锐二面角的余弦值
解析

试题分析:(Ⅰ)点是直线中点,证明平面;证明线面平行,主要是证明线线平行,证明线线平行的方法有两种,一种利用三角形的中位线,另一种是利用平行四边形对边平行,此题不符合利用三角形的中位线,可考虑构造平行四边形来证,取的中点连结,证明即可,故只需证明即可,由作法可知,为此取的中点,连结,证明即可;(Ⅱ)求平面与平面所成的锐二面角的余弦值,处理方法有两种,一传统方法,二向量法,传统方法首先确定二面角,过的平行线,过的垂线交,连结,注意到棱垂直平面,∴是所求二面角的平面角,从而求得平面与平面所成的锐二面角的余弦值,向量法,建立空间坐标系,以点为原点,直线轴,直线轴,建立空间直角坐标系,主要找两个平面的法向量,平面的一个法向量为.只需设平面的法向量为,由题意求出法向量为即可.
试题解析:(Ⅰ)证明:
的中点连结,则
,取的中点,连结
,∴△是正三角形,∴

∴四边形为矩形,∴.      4分
又∵
,四边形是平行四边形.
,而平面平面,∴平面.6分
(Ⅱ)(法1)过的平行线,过的垂线交,连结
,∴
是平面与平面所成二面角的棱.    8分
∵平面平面,∴平面
又∵平面平面,∴
是所求二面角的平面角.      10分
,则
,                       
.    12分
(法2)∵,平面平面
∴以点为原点,直线轴,直线轴,建立空间直角坐标系,则轴在平面内(如图).设,由已知,得

,       8分
设平面的法向量为


解之得
,得平面的一个法向量为.            10分
又∵平面的一个法向量为.   10分
.   12分
核心考点
试题【如图,已知直角梯形所在的平面垂直于平面,,,.(Ⅰ)点是直线中点,证明平面;(Ⅱ)求平面与平面所成的锐二面角的余弦值.】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=,O为AB的中点.

(Ⅰ)求证:EO⊥平面ABCD;
(Ⅱ)求点D到平面AEC的距离.
题型:不详难度:| 查看答案
已知三条不重合的直线和两个不重合的平面α、β,下列命题中正确命题个数为(  )
①若


A.1B.2C.3D.4

题型:不详难度:| 查看答案
如图,三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.

(Ⅰ)证明EF//平面A1CD;
(Ⅱ)证明平面A1CD⊥平面A1ABB1;
(Ⅲ)求直线BC与平面A1CD所成角的正弦值.
题型:不详难度:| 查看答案
,平面⊥平面是线段上一点,

(Ⅰ)证明:⊥平面
(Ⅱ)若,求直线与平面所成角的正弦值.
题型:不详难度:| 查看答案
如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD^底面ABCD,PD=DC,点E是PC的中点,作EF^PB交PB于点F,

(1)求证:PA//平面EDB;
(2)求证:PB^平面EFD;
(3)求二面角C-PB-D的大小.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.