当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 如图,在四棱锥中,⊥面,为线段上的点.(Ⅰ)证明:⊥面 ; (Ⅱ)若是的中点,求与所成的角的正切值;(Ⅲ)若满足⊥面,求的值....
题目
题型:不详难度:来源:
如图,在四棱锥中,⊥面,为线段上的点.

(Ⅰ)证明:⊥面 ;
(Ⅱ)若的中点,求所成的角的正切值;
(Ⅲ)若满足⊥面,求的值.
答案
(Ⅰ)详见解析;(Ⅱ);(Ⅲ)
解析

试题分析:(Ⅰ)证BD与面PAC内的两条相交线PA和AC都垂直,根据线面垂直可证,利用证角等于的方法可证,详见解析。(Ⅱ) 设,由(1)知,所以GO为GD在面PAC内的摄影,所以即为所求,在直角三角形中利用三角函数即可求出。(Ⅲ)根据(Ⅰ)中条件可求出,在直角三角形中利用勾股定理求出,同理求出,根据已知⊥面可得,根据两直角三角形用公共边可列出方程求解。
试题解析:证明:(Ⅰ)由已知得三角形是等腰三角形,且底角等于30°,且,所以;、,又因为;
(Ⅱ)设,由(1)知,连接,所以与面所成的角是,由已知及(1)知:,
,所以与面所成的角的正切值是;
(Ⅲ)由已知得到:,因为,在中,,因为⊥面,,所以,设

核心考点
试题【如图,在四棱锥中,⊥面,为线段上的点.(Ⅰ)证明:⊥面 ; (Ⅱ)若是的中点,求与所成的角的正切值;(Ⅲ)若满足⊥面,求的值.】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
如图①,△BCD内接于直角梯形,A1D∥A2A3,A1A2⊥A2A3,A1D=10,A1A2=8,沿△BCD三边将△A1BD、△A2BC、△A3CD翻折上去,恰好形成一个三棱锥ABCD,如图②.

(1)求证:AB⊥CD;
(2)求直线BD和平面ACD所成的角的正切值;
(3)求四面体的体积。
题型:不详难度:| 查看答案
如图,在直三棱柱中,是棱上的一点,的延长线与的延长线的交点,且∥平面

(1)求证:
(2)求二面角的平面角的余弦值;
(3)求点到平面的距离.
题型:不详难度:| 查看答案
如图,已知六棱锥的底面是正六边形,则下列结论正确的是(    )
A.
B.
C.直线
D.直线所成的角为45°

题型:不详难度:| 查看答案
过两平行平面α、β外的点P两条直线AB与CD,它们分别交α于A、C两点,交β于B、D两点,若PA=6,AC=9,PB=8,则BD的长为_______.
题型:不详难度:| 查看答案
在棱长为1的正方体ABCD﹣A1B1C1D1中,过对角线BD1的一个平面交AA1于E,交CC1于F,得四边形BFD1E,给出下列结论:
①四边形BFD1E有可能为梯形
②四边形BFD1E有可能为菱形
③四边形BFD1E在底面ABCD内的投影一定是正方形
④四边形BFD1E有可能垂直于平面BB1D1D
⑤四边形BFD1E面积的最小值为
其中正确的是      (请写出所有正确结论的序号)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.