当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 如图1,矩形中,,,、分别为、边上的点,且,,将沿折起至位置(如图2所示),连结、,其中.(Ⅰ)求证:平面;(Ⅱ)在线段上是否存在点使得平面?若存在,求出点的位...
题目
题型:不详难度:来源:
如图1,矩形中,,,分别为边上的点,且,,将沿折起至位置(如图2所示),连结,其中.

(Ⅰ)求证:平面
(Ⅱ)在线段上是否存在点使得平面?若存在,求出点的位置;若不存在,请说明理由.
(Ⅲ)求点到平面的距离.
答案
(Ⅰ)答案详见解析;(Ⅱ)存在,;(Ⅲ) .
解析

试题分析:(Ⅰ)三角形和三角形中,各边长度确定,故可利用勾股定理证明垂直关系
,进而由线面垂直的判定定理可证明平面;(Ⅱ)要使得平面,只需,因为,故;(Ⅲ)点到平面的距离,就是点到平面垂线段的长度,如果垂足位置不易确定,可考虑等体积转化,该题中点到面的距离确定,故可利用求点到平面的距离.
试题解析:(Ⅰ)连结,由翻折不变性可知,,,在中,,所以, 在图中,易得,
中,,所以,又,平面,平面,所以平面.

(Ⅱ)当的三等分点(靠近)时,平面.证明如下:
因为,,所以 , 又平面,平面,所以平面.
(Ⅲ) 由(Ⅰ)知平面,所以为三棱锥的高.
设点到平面的距离为,由等体积法得, 即,又,, 所以, 即点到平面的距离为.
核心考点
试题【如图1,矩形中,,,、分别为、边上的点,且,,将沿折起至位置(如图2所示),连结、,其中.(Ⅰ)求证:平面;(Ⅱ)在线段上是否存在点使得平面?若存在,求出点的位】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
如图1,矩形中,,,分别为边上的点,且,,将沿折起至位置(如图2所示),连结,其中.

(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.
题型:不详难度:| 查看答案
已知长方体,点的中点.

(1)求证:
(2)若,试问在线段上是否存在点使得,若存在求出,若不存在,说明理由.
题型:不详难度:| 查看答案
如图,在正三棱柱中,分别为的中点.

(1)求证:平面
(2)求证:平面平面.
题型:不详难度:| 查看答案
如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:

(1)PA∥平面MDB;
(2)PD⊥BC.
题型:不详难度:| 查看答案
已知直线平面,直线平面,则直线的位置关系是       .
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.