当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 已知四棱锥,底面为矩形,侧棱,其中,为侧棱上的两个三等分点,如下图所示.(1)求证:;(2)求异面直线与所成角的余弦值;(3)求二面角的余弦值. ...
题目
题型:不详难度:来源:
已知四棱锥,底面为矩形,侧棱,其中为侧棱上的两个三等分点,如下图所示.
(1)求证:
(2)求异面直线所成角的余弦值;
(3)求二面角的余弦值.
 
答案
(1)详见解析;(2);(3)
解析

试题分析:(1)利用底面矩形的对角线互相平分产生一个AC的中点,从而构造出了△ANC的中位线,利用线线平行得到了线面平行;(2)此题利用传统平移的做法求异面直线的夹角略显繁琐,故可利用条件中PA⊥平面ABCD产生空间直角坐标系,利用空间向量求线线角;(3)同(2),传统做出二面角的平面角的方法比较繁琐,利用已经建好的坐标系求出法向量,进而可以得到二面角的余弦值.
(1)证明:连结AC交BD于O,连结OM,
∵底面ABCD为矩形,∴O为AC中点,∵M、N为侧棱PC的三等份点,∴CM=CN,
∴OM//AN, ∵OM平面MBD,AN平面MBD,∴AN//平面MBD  4分.
(2)如图所示,以A为原点,建立空间直角坐标系A-xyz,

则A(0,0,0),B(3,0,0),C(3,6,0),D(0,6,0),P(0,0,3),M(2,4,1),N(1,2,2),
,  ,  
异面直线AN与PD所成角的余弦值为         8分
(3)∵侧棱PA垂直底面ABCD,∴平面BCD的一个法向量为=(0,0,3),           
设平面MBD的法向量为m=(x,y,z),,并且,
,令y-1得x=2,z=-2,
∴平面MBD的一个法向量为m=(2,1,-2),,   12分
由图可知二面角M-BD-C的大小是锐角,
∴二面角M-BD-C大小的余弦值为      12分.
核心考点
试题【已知四棱锥,底面为矩形,侧棱,其中,为侧棱上的两个三等分点,如下图所示.(1)求证:;(2)求异面直线与所成角的余弦值;(3)求二面角的余弦值. 】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
如图,在长方体中,
(1)若点在对角线上移动,求证:
(2)当为棱中点时,求点到平面的距离。

题型:不详难度:| 查看答案
如图,四棱锥的底面边长为8的正方形,四条侧棱长均为.点分别是棱上共面的四点,平面平面平面.
证明:
,求四边形的面积.

题型:不详难度:| 查看答案
如图,四棱锥的底面是平行四边形,,分别是棱的中点.
(1)证明平面
(2)若二面角P-AD-B为
①证明:平面PBC⊥平面ABCD
②求直线EF与平面PBC所成角的正弦值.
 
题型:不详难度:| 查看答案
如图,在四棱锥中,平面平面.
(1)证明:平面
(2)求直线与平面所成的角的正切值.

题型:不详难度:| 查看答案
(本小题满分12分)
在平行四边形中,.将沿折起,使得平面平面,如图.

(1)求证:
(2)若中点,求直线与平面所成角的正弦值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.