当前位置:高中试题 > 数学试题 > 平面的法向量 > 如图,三棱锥P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。(I)求棱PB的长;(II)求二面角P—AB—C的大小。...
题目
题型:不详难度:来源:
如图,三棱锥P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。

(I)求棱PB的长;
(II)求二面角P—AB—C的大小。
答案
(I)(II)
解析

试题分析:(I)如图1,作PO⊥AC,垂足为O,连结OB,
由已知得,△POC≌△BOC,则BO⊥AC。

 
∵平面PAC⊥平面BAC,∴PO⊥平面BAC,∴PO⊥OB,
 

(II)方法1:如图1,作OD⊥AB,垂足为D,连结PD,由三垂线定理得,PD⊥AB。
则∠PDO为二面角P—AB—C的平面角的补角。

二面角P—AB—C的大小为 
方法2:如图2,分别以OB,OC,OP为x轴,y轴,z轴,建立空间直角坐标系
O—xyz,则

 
为面ABC的法向量。  

易知二面角P—AB—C的平面角为钝角,
故二面角P—AB—C的大小为 

点评:第二问求二面角分别用了几何法(作出二面角平面角,计算大小)和向量法(建立坐标系,写出相关点的坐标,找到两面的法向量,通过法向量的夹角找到二面角)
核心考点
试题【如图,三棱锥P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。(I)求棱PB的长;(II)求二面角P—AB—C的大小。】;主要考察你对平面的法向量等知识点的理解。[详细]
举一反三
(理)如图,P—ABCD是正四棱锥,是正方体,其中

(1)求证:
(2)求平面PAD与平面所成的锐二面角的余弦值;
题型:不详难度:| 查看答案
如图,在四棱锥中,顶点在底面内的射影恰好落在的中点上,又

(1)求证:
(2)若,求直线所成角的余弦值;
(3)若平面与平面所成的角为,求的值。
题型:不详难度:| 查看答案
在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。

(1)请在线段CE上找到一点F,使得直线BF∥平面ACD,并证明;
(2)求平面BCE与平面ACD所成锐二面角的大小;
题型:不详难度:| 查看答案
如图,四棱锥中,是正三角形,四边形是矩形,且平面平面

(Ⅰ) 若点的中点,求证:平面
(II)若点为线段的中点,求二面角的正切值.
题型:不详难度:| 查看答案
如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面.

(Ⅰ)证明:平面;
(Ⅱ)若,,求二面角的正切值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.