当前位置:高中试题 > 数学试题 > 平面的法向量 > 如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.(Ⅰ)求异面直线EF与BC所成角的大小;(...
题目
题型:不详难度:来源:
如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.

(Ⅰ)求异面直线EF与BC所成角的大小;
(Ⅱ)若二面角A-BF-D的平面角的余弦值为,求AB的长.
答案
(Ⅰ)30°;(Ⅱ)
解析

试题分析:(Ⅰ)异面直线EF与BC所成角的大小,即AD与EF所成角的大小,则在面ADEF内求AD与EF所成角的大小即可;(Ⅱ)法一:根据条件,取AF的中点G,先证明DG垂直平面ABF,然后过G向交线BF作垂线,找出二面角的平面角,根据平面角的余弦值大小,列关系式求AB的长;法二:以F为原点,AF、FQ所在直线为x轴,y轴建立空间直角坐标系,列出各点坐标,分别找出面ABF和面BDF的法向量,再根据向量的数量积公式以及平面角的余弦值求AB的长.
试题解析:(Ⅰ) 延长AD,FE交于Q.
因为ABCD是矩形,所以BC∥AD,
所以∠AQF是异面直线EF与BC所成的角.
在梯形ADEF中,因为DE∥AF,AF⊥FE,AF=2,DE=1
得AQF=30°. 7分

(Ⅱ)方法一:
设AB=x.取AF的中点G.由题意得DG⊥AF.
因为平面ABCD⊥平面ADEF,AB⊥AD,所以AB⊥平面ADEF,
所以AB⊥DG.
所以DG⊥平面ABF.
过G作GH⊥BF,垂足为H,连结DH,则DH⊥BF,
所以∠DHG为二面角A-BF-D的平面角.
在直角△AGD中,AD=2,AG=1,得DG=
在直角△BAF中,由=sin∠AFB=,得
所以GH=
在直角△DGH中,DG=,GH=,得DH=
因为cos∠DHG=,得x=
所以AB=. 15分
方法二:设AB=x.
以F为原点,AF,FQ所在的直线分别为x轴,y轴建立空间直角坐标系Fxyz.则
F(0,0,0),A(-2,0,0),E(,0,0),D(-1,,0),B(-2,0,x),
所以=(1,-,0),=(2,0,-x).

因为EF⊥平面ABF,所以平面ABF的法向量可取=(0,1,0).
=(x1,y1,z1)为平面BFD的法向量,则

所以,可取=(,1,).
因为cos<>=,得x=
所以AB=. 15分
核心考点
试题【如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.(Ⅰ)求异面直线EF与BC所成角的大小;(】;主要考察你对平面的法向量等知识点的理解。[详细]
举一反三
已知,则的值为                
题型:不详难度:| 查看答案
若P是平面外一点,A为平面内一点,为平面的一个法向量,则点P到平面的距离是
A.B.C.D.

题型:不详难度:| 查看答案
.如图,在四面体OABC中,G是底面ABC的重心,则等于
A.B.
C.D.

题型:不详难度:| 查看答案
如图,在四棱锥中,⊥平面,底面为梯形,,点在棱上,且

(1)当时,求证:∥面
(2)若直线与平面所成角为,求实数的值.
题型:不详难度:| 查看答案
如图,在直三棱柱中,中点.

(1)求证:平面
(2)求直线与平面所成角的正弦值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.