当前位置:高中试题 > 数学试题 > 空间向量的基本概念 > 如图,在四棱锥中,底面,底面为正方形,,分别是的中点.(1)求证:;(2)在平面内求一点,使平面,并证明你的结论;(3)求与平面所成角的正弦值....
题目
题型:不详难度:来源:
如图,在四棱锥中,底面,底面为正方形,分别是的中点.

(1)求证:
(2)在平面内求一点,使平面,并证明你的结论;
(3)求与平面所成角的正弦值.
答案
(1)详见解析;(2)详见解析;(3)
解析

试题分析:在空间中直线、平面的平行和垂直关系的判定,求空间中的角,可以用相关定义和定理解决,如(1)中,易证,所以,,但有些位置关系很难转化,特别求空间中的角,很难找到直线在平面内的射影,很难作出二面角,这时空间向量便可大显身手,如果图形便于建立空间直角坐标系,则更为方便,本题就是建立空间直角坐标系,写出各点坐标(1)计算即可;(2)设,再由解出,即可找出点;(3)用待定系数法求出件可求出平面的法向量,再求出平面的法向量与向量平面的夹角的余弦,从而得到结果.
试题解析:以所在直线为轴、轴、轴建立空间直角坐标系(如图),设,则
(1)因为,所以.       4分
(2)设,则平面
,所以
,所以
点坐标为,即点为的中点.         8分
(3)设平面的法向量为
得,
,则,得

所以,与平面所成角的正弦值的大小为      13分
核心考点
试题【如图,在四棱锥中,底面,底面为正方形,,分别是的中点.(1)求证:;(2)在平面内求一点,使平面,并证明你的结论;(3)求与平面所成角的正弦值.】;主要考察你对空间向量的基本概念等知识点的理解。[详细]
举一反三
(本小题12分)如图:四棱锥P—ABCD中,底面ABCD

是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(1)证明:无论点E在BC边的何处,都有PE⊥AF;
(2)当BE等于何值时,PA与平面PDE所成角的大小为45°. 
题型:不详难度:| 查看答案
已知四棱锥P-ABCD的底面ABCD是边长为1的正方形,PD⊥底面ABCD,PD="AD."

(Ⅰ)求证:BC∥平面PAD;
(Ⅱ)若E、F分别为PB,AD的中点,求证:EF⊥BC;
(Ⅲ)求二面角C-PA-D的余弦值.
题型:不详难度:| 查看答案
在如图所示的空间直角坐标系O-xyz中,原点O是BC的中点,A点坐标为,D点在平面yoz上,BC=2,∠BDC=90°,∠DCB=30°.

(Ⅰ)求D点坐标;
(Ⅱ)求的值.
题型:不详难度:| 查看答案
在空间直角坐标系中,点与点的距离为_____.
题型:不详难度:| 查看答案
空间四边形ABCD的各顶点坐标分别是,E,F分别是AB与CD的中点,则EF的长为(    )
A.B.C.D.3

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.