当前位置:高中试题 > 数学试题 > 空间向量的基本概念 > 在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,则AD与平面AA1C1C所成的角的正弦值为(  )A.B.-C.D.-...
题目
题型:不详难度:来源:
在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,则AD与平面AA1C1C所成的角的正弦值为(  )
A.B.-C.D.-

答案
A
解析
取AC中点E,连接BE,则BE⊥AC,
如图,建立空间直角坐标系B-xyz,
则A(,0),D(0,0,1),
=(-,-,1).
∵平面ABC⊥平面AA1C1C,BE⊥AC,
∴BE⊥平面AA1C1C.
=(,0,0)为平面AA1C1C的一个法向量,
∴cos〈〉=-
设AD与平面AA1C1C所成的角为α,
∴sinα=|cos〈〉|=,故选A.
核心考点
试题【在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,则AD与平面AA1C1C所成的角的正弦值为(  )A.B.-C.D.-】;主要考察你对空间向量的基本概念等知识点的理解。[详细]
举一反三
如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1-DC-C1的大小为60°,则AD的长为(  )
A.B.C.2D.

题型:不详难度:| 查看答案
在空间直角坐标系中,若点A(1,2,﹣1),B(﹣3,﹣1,4).则|AB|=  .   
题型:不详难度:| 查看答案
已知向量a=(1,1,0),b=(-1,0,2),且ka+b与2a-b互相垂直,则k值是(  )
A.1B.C.D.

题型:不详难度:| 查看答案
如图:直三棱柱(侧棱⊥底面)ABC—A1B1C1中,∠ACB=90°,AA1=AC=1,BC=,CD⊥AB,垂足为D.

(1)求证:BC∥平面AB1C1;
(2)求点B1到面A1CD的距离.
题型:不详难度:| 查看答案
如图所示,ABCD-A1B1C1D1是棱长为6的正方体,E,F分别是棱AB,BC上的动点,且AE=BF.当A1,E,F,C1共面时,平面A1DE与平面C1DF所成二面角的余弦值为(  )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.