当前位置:高中试题 > 数学试题 > 四种命题的概念 > △ABC的三个内角A、B、C的对边分别是a,b,c,给出下列命题:①若sinBcosC>-cosBsinC,则△ABC一定是钝角三角形;②若sin2A+sin2...
题目
题型:不详难度:来源:
△ABC的三个内角A、B、C的对边分别是a,b,c,给出下列命题:
①若sinBcosC>-cosBsinC,则△ABC一定是钝角三角形;
②若sin2A+sin2B=sin2C,则△ABC一定是直角三角形;
③若bcosA=acosB,则△ABC为等腰三角形;
④在△ABC中,若A>B,则sinA>sinB;
其中正确命题的序号是______.(注:把你认为正确的命题的序号都填上)
答案
①若sinBcosC>-cosBsinC⇒sinBcosC+cosBsinC=sin(B+C)>0⇒0<B+C<π,所以①不一定成立;
②∵sinA=
a
2r
,sinB=
b
2r
,sinC=
c
2r
,∴
a2
4r2
+
b2
4r2
=
c2
4r2
,即a2+b2=c2,∴△ABC是直角三角形,②成立,
③若bcosA=acosB⇒2rsinBcosA=2rsinAcosB⇒sin(B-A)=0⇒A=B即③成立.
④在△ABC中,若A>B⇒a>b⇒2rsinA>2rsinB⇒sinA>sinB即④成立;
故正确命题的是②③④.
故答案为:②③④.
核心考点
试题【△ABC的三个内角A、B、C的对边分别是a,b,c,给出下列命题:①若sinBcosC>-cosBsinC,则△ABC一定是钝角三角形;②若sin2A+sin2】;主要考察你对四种命题的概念等知识点的理解。[详细]
举一反三
命题甲:“方程x2+
y2
m
=1
是焦点在y轴上的椭圆”,
命题乙:“函数f(x)=
4
3
x3-2mx2+(4m-3)x-m=0
在(-∞,+∞)上单调递增”,
这两个命题有且只有一个成立,试求实数m的取值范围.
题型:不详难度:| 查看答案
给出下列四个命题:
①在空间中,垂直于同一条直线的两条直线平行;
②若


x2
=1
,则x=±1;
③命题“两个相似的三角形面积相等”;
④f(x)=|x-1|是偶函数
其中真命题有______.
题型:不详难度:| 查看答案
在△ABC中,AB=2,AC=4,若点D为边BC的中点,P为△ABC的外心,给出下列数量积:


AB


AC



AD


BC



AD


AB



AP


AB



AP


BC

其中其中数量积为定值的序号是______.(请填上所有正确的结论的序号).
题型:不详难度:| 查看答案
写出命题“若a>b,则a-2>b-2”的否命题、逆命题、逆否命题、命题的否定,并判断真假.
题型:不详难度:| 查看答案
下列是有关直线与圆锥曲线的命题:
①过点(2,4)作直线与抛物线y2=8x有且只有一个公共点,这样的直线有2条;
②过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线有且仅有两条;
③过点(3,1)作直线与双曲线
x2
4
-y2=1
有且只有一个公共点,这样的直线有3条;
④过双曲线x2-
y2
2
=1
的右焦点作直线l交双曲线于A,B两点,若|AB|=4,则满足条件的直线l有3条;
⑤已知双曲线x2-
y2
2
=1
和点A(1,1),过点A能作一条直线l,使它与双曲线交于P,Q两点,且点A恰为线段PQ的中点.
其中说法正确的序号有______.(请写出所有正确的序号)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.