当前位置:高中试题 > 数学试题 > 四种命题的概念 > 函数f(x)的定义域为A,若x1、x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命...
题目
题型:不详难度:来源:
函数f(x)的定义域为A,若x1、x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①若函数f(x)是f(x)=x2(x∈R),则f(x)一定是单函数;
②若f(x)为单函数,x1、x2∈A且x1≠x2,则f(x1)≠f(x2);
③若定义在R上的函数f(x)在某区间上具有单调性,则f(x)一定是单函数;
④若函数f(x)是周期函数,则f(x)一定不是单函数;
⑤若函数f(x)是奇函数,则f(x)一定是单函数.
其中的真命题的序号是______.
答案
①若函数f(x)是f(x)=x2,则由f(x1)=f(x2)得
x21
=
x22
,得到x1=±x2,所以①不是单函数,所以①错误.
②若f(x)为单函数,则f(x1)=f(x2)时总有x1=x2,即x1≠x2,则f(x1)≠f(x2),所以②正确.
③当函数单调时,在单调区间上必有f(x1)=f(x2)时总有x1=x2,但在其他定义域上,不一定是单函数,所以③错误.
④若函数f(x)是周期函数,则满足f(x1)=f(x2),则有x1=kT+x2,所以④正确.
⑤若函数f(x)是奇函数,比如f(x)=sinx,是奇函数,则满足f(x1)=f(x2),则x1,x2,不一定相等.所以⑤错误.
故答案为:②④.
核心考点
试题【函数f(x)的定义域为A,若x1、x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命】;主要考察你对四种命题的概念等知识点的理解。[详细]
举一反三
已知命题p:任意x∈R,x2+1≥a,命题q:方程
x2
a+2
-
y2
2
=1表示双曲线.
(1)若命题p为真命题,求实数a的取值范围;
(2)若“p且q”为真命题,求实数a的取值范围.
题型:不详难度:| 查看答案
已知命题P:函数f(x)=lg(ax2-x+
a
16
)的定义域为R,命题Q:不等式a>
1
x+1
对x∈(0,+∞)均成立,如果“P或 Q”为真命题,“P且Q”为假命题,求实数a的取值范围.
题型:不详难度:| 查看答案
设a,b,c∈R,有下列命题:
①若a>0,则f(x)=ax+b在R上是单调函数;
②若f(x)=ax+b在R上是单调函数,则a>0;
③若b2-4ac<0,则 a3+ab+c≠0;
④若a3+ab+c≠0,则b2-4ac<0.
其中,真命题的序号是______.
题型:嘉兴二模难度:| 查看答案
给出下列四个命题:
①存在实数α,使sinα•cosα=1;
f(x)=-2cos(
2
-2x)
是奇函数;
x=-
8
是函数y=3sin(2x-
3
4
π)
的图象的一条对称轴;
④函数y=cos(sinx)的值域为[0,cos1].
其中正确命题的序号是 ______.
题型:不详难度:| 查看答案
已知椭圆C1的中心在坐标原点,焦点在坐标轴上.
(1)若椭圆C1过点(


2
,0)和(0,2),求椭圆C1的标准方程;
(2)试判断命题“若椭圆C2:x2+y2=1(在椭圆C1内)任意一条切线都与椭圆C1交于两点,且这两点总与坐标原点构成直角三角形,则满足条件的椭圆C1恒过定点”的真假.若命题为真命题,求出定点坐标,若为假命题,说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.