当前位置:高中试题 > 数学试题 > 离散型随机变量均值与方差 > 如图,从A1(1,0,0),A2(2,0,0),B1(0,2,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个...
题目
题型:高考真题难度:来源:
如图,从A1(1,0,0),A2(2,0,0),B1(0,2,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0)。
(1)求V=0的概率;
(2)求V的分布列及数学期望EV。
答案
解:(1)从6个点中随机选取3个点共有=20种取法,选取的三个点与原点在一个平面内的取法有=12种,
∴V=0的概率P(V=0)==
(2)V的所有可能取值为0,
P(V=0)=
P(V=)==
P(V=)==
P(V=)==
P(V=)==
∴V的分布列为:

由V的分布列可得EV=0×++++=
核心考点
试题【如图,从A1(1,0,0),A2(2,0,0),B1(0,2,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
某工厂2010年第一季度生产的A、B、C、D四种型号的产品产量用条形图表示如图,现用分层抽样的方法从中选取50件样品参加四月份的一个展销会:
(1)问A、B、C、D型号的产品各抽取多少件?
(2)从50件样品随机的抽取2件,求这2件产品恰好是不同型号产品的概率;
(3)从A、C型号的产品中随机的抽取3件,用?表示抽取A种型号的产品件数,求?的分布列和数学期望.
题型:月考题难度:| 查看答案
设10≤x1<x2<x3<x4≤104,x5=105,随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则[     ]
A.Dξ1>Dξ2
B.Dξ1=Dξ2
C.Dξ1<Dξ2
D.Dξ1与Dξ2的大小关系与x1、x2、x3、x4的取值有关
题型:高考真题难度:| 查看答案
某汽车驾驶学校在学员结业前,对学员的驾驶技术进行4次考核,规定:按顺序考核,一旦考核合格就不必参加以后的考核,否则还需参加下次考核.若学员小李独立参加每次考核合格的概率依次组成一个公差为 的等差数列,他参加第一次考核合格的概率超过 ,且他直到参加第二次考核才合格的概率为 .
(1)求小李第一次参加考核就合格的概率p.;
(2)求小李参加考核的次数ξ的分布列和数学期望Eξ.
题型:月考题难度:| 查看答案
北京时间2011年3月11日13时46分,在日本东海岸附近海域发生里氏9级地震后引发海啸,导致福岛第一核电站受损严重.3月12日以来,福岛第一核电站的4台机组(编号分别为1、2、3、4)的核反应堆相继发生爆炸,放射性物质泄漏到外部.某评估机构预估日本在十年内修复该核电站第1、2、3、4号机组的概率分别为.假设这4台机组能否被修复相互独立.
(1)求十年内这4台机组中恰有1台机组被修复的概率;
(2)求十年内这4台机组中被修复的机组的总数为随机变量ξ,求随机变量?的分布列和数学期望Eξ.
题型:期末题难度:| 查看答案
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示:
已知这100 位顾客中的一次购物量超过8 件的顾客占55 %。
(1)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;
(2)若某顾客到达收银台时前面恰有2 位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5 分钟的概率。
题型:高考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.