当前位置:高中试题 > 数学试题 > 离散型随机变量均值与方差 > 某同学参加语文、数学、英语3门课程的考试.假设该同学语文课程取得优秀成绩的概率为 ,数学、英语课程取得优秀成绩的概率分别为m,n(m>n),且该同学3门课程都获...
题目
题型:山东省月考题难度:来源:
某同学参加语文、数学、英语3门课程的考试.假设该同学语文课程取得优秀成绩的概率为 ,数学、英语课程取得优秀成绩的概率分别为m,n(m>n),且该同学3门课程都获得优秀的概率为 ,该同学3门课程都未获得优秀的概率为 ,且不同课程是否取得优秀成绩相互独立.
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;
(Ⅱ) 记ξ为该生取得优秀成绩的课程门数,求ξ的分布列及数学期望Eξ.
答案
解:设事件Ai表示:该生语文、数学、英语课程取得优异成绩,i=1,2,3.
由题意可知,P(A2)=m,P(A3)=n
(I)由于事件“该生至少有一门课程取得优异成绩”与事件”ξ=0”是对立的,
所以该生至少有一门课程取得优秀成绩的概率是
(II)由题意可知,ξ的可能取值为0,1,2,3

; 解得(m>n).
=

 ∴ξ的分布列为

所以数学期望
核心考点
试题【某同学参加语文、数学、英语3门课程的考试.假设该同学语文课程取得优秀成绩的概率为 ,数学、英语课程取得优秀成绩的概率分别为m,n(m>n),且该同学3门课程都获】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
我校开设甲、乙、丙三门校本选修课程,学生是否选修哪门课互不影响.己知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门的概率是0.88.
(1)求学生李华选甲校本课程的概率;
(2)用ξ表示该学生选修的校本课程门数和没有选修的校本课程门数的乘积,求ξ的分布列和数学期望.
题型:山西省月考题难度:| 查看答案
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球.
(I)求取出的4个球均为黑色球的概率;
(II)求取出的4个球中恰有1个红球的概率;
(III)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.
题型:四川省月考题难度:| 查看答案
一次围棋擂台赛,由一位职业围棋高手设擂做擂主,甲、乙、丙三位业余围棋高手攻擂.如果某一业余棋手获胜,或者擂主战胜全部业余棋手,则比赛结束.已知甲、乙、丙三人战胜擂主的概率分别为p1,p2,p3,每人能否战胜擂主是相互独立的.
(1)求这次擂主能成功守擂(即战胜三位攻擂者)的概率;
(2)若按甲、乙、丙顺序攻擂,这次擂台赛共进行了x次比赛,求x得数学期望;
(3)假定p3<p2<p1<1,试分析以怎样的先后顺序出场,可使所需出场人员数的均值(数学期望)达到最小,并证明你的结论.
题型:江苏省期末题难度:| 查看答案
旅游公司为3个旅游团提供4条旅游线路,每个旅游团任选其中一条.
(1)求3个旅游团选择3条不同的线路的概率;
(2)求选择甲线路旅游团数的分布列和期望.
题型:湖南省月考题难度:| 查看答案
某人进行射击训练,击中目标的概率是 ,且各次射击的结果互不影响.
(Ⅰ)假设该人射击5次,求恰有2次击中目标的概率;
(Ⅱ)假设该人每射击5发子弹为一组,一旦命中就停止,并进入下一组练习,否则一直打完5发子弹才能进入下一组练习,求:
①在完成连续两组练习后,恰好共使用了4发子弹的概率;
②一组练习中所使用子弹数ξ的分布列,并求ξ的期望.
题型:北京市期末题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.