当前位置:高中试题 > 数学试题 > 离散型随机变量均值与方差 > 我校开设甲、乙、丙三门校本选修课程,学生是否选修哪门课互不影响.己知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一...
题目
题型:山西省月考题难度:来源:
我校开设甲、乙、丙三门校本选修课程,学生是否选修哪门课互不影响.己知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门的概率是0.88.
(1)求学生李华选甲校本课程的概率;
(2)用ξ表示该学生选修的校本课程门数和没有选修的校本课程门数的乘积,求ξ的分布列和数学期望.
答案
解:(1)设该学生选修甲、乙、丙三门校本课程的概率分别为x,y,z则

∴学生李华选甲校本课程的概率为0.4
(2)依题意,ξ的取值为0和2,
由(1)知,P(ξ)=0.24,P(ξ=2)=1﹣P(ξ=0)=0.76
分布列为:

E(ξ)=0×0.24+2×0.76=1.52
核心考点
试题【我校开设甲、乙、丙三门校本选修课程,学生是否选修哪门课互不影响.己知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球.
(I)求取出的4个球均为黑色球的概率;
(II)求取出的4个球中恰有1个红球的概率;
(III)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.
题型:四川省月考题难度:| 查看答案
一次围棋擂台赛,由一位职业围棋高手设擂做擂主,甲、乙、丙三位业余围棋高手攻擂.如果某一业余棋手获胜,或者擂主战胜全部业余棋手,则比赛结束.已知甲、乙、丙三人战胜擂主的概率分别为p1,p2,p3,每人能否战胜擂主是相互独立的.
(1)求这次擂主能成功守擂(即战胜三位攻擂者)的概率;
(2)若按甲、乙、丙顺序攻擂,这次擂台赛共进行了x次比赛,求x得数学期望;
(3)假定p3<p2<p1<1,试分析以怎样的先后顺序出场,可使所需出场人员数的均值(数学期望)达到最小,并证明你的结论.
题型:江苏省期末题难度:| 查看答案
旅游公司为3个旅游团提供4条旅游线路,每个旅游团任选其中一条.
(1)求3个旅游团选择3条不同的线路的概率;
(2)求选择甲线路旅游团数的分布列和期望.
题型:湖南省月考题难度:| 查看答案
某人进行射击训练,击中目标的概率是 ,且各次射击的结果互不影响.
(Ⅰ)假设该人射击5次,求恰有2次击中目标的概率;
(Ⅱ)假设该人每射击5发子弹为一组,一旦命中就停止,并进入下一组练习,否则一直打完5发子弹才能进入下一组练习,求:
①在完成连续两组练习后,恰好共使用了4发子弹的概率;
②一组练习中所使用子弹数ξ的分布列,并求ξ的期望.
题型:北京市期末题难度:| 查看答案
(选做题)
某城市有甲、乙、丙、丁4个旅游景点,一位客人游览这4个景点的概率都是0.6,且客人是否游览哪个景点互不影响.设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.
(Ⅰ)求ξ的分布列及数学期望;
(Ⅱ) 记“函数f(x)=x2﹣3ξx+1在区间[4,+∞)上单调递增”为事件A,求事件A的概率.
题型:江苏省月考题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.