当前位置:高中试题 > 数学试题 > 离散型随机变量均值与方差 > 某次有奖竞猜活动中,主持人准备了A`、B两个相互独立问题,并且宣布:观众答对问题A可获奖金a元,答对问题B可获奖金2a元,先答哪个问题由观众选择,只有第一个问题...
题目
题型:不详难度:来源:
某次有奖竞猜活动中,主持人准备了A`、B两个相互独立问题,并且宣布:观众答对问题A可获奖金a元,答对问题B可获奖金2a元,先答哪个问题由观众选择,只有第一个问题答对才能再答第2个问题,否则终止答题。若你被选为幸运观众,且假设你答对问题A、B的概率分别为,.问你觉得应先回答哪个问题才能使你获得奖金的期望最大?说明理由。
答案

先答哪题获奖金的期望一样大
解析

设先答A、B所得奖金分别为ξ和η,则P(ξ=0)=1-=,P(ξ=a)=(1-)=,P(ξ=3a)=×=,∴Eξ=a.P(η=0)=1-=,P(ξ=2a)=(1-)=,P(ξ=3a)=×=,∴Eη=a.
由此知,先答哪题获奖金的期望一样大.
核心考点
试题【某次有奖竞猜活动中,主持人准备了A`、B两个相互独立问题,并且宣布:观众答对问题A可获奖金a元,答对问题B可获奖金2a元,先答哪个问题由观众选择,只有第一个问题】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
某工厂生产一种精密仪器,产品是否合格需先后经两道相互独立的工序检查,且当第一道工序检查合格后才能进入第二道工序,经长期监测发现,该仪器第一道工序检查合格的概率为,第二道工序检查合格的概率为.已知该厂每月生为3台这种仪器.
(1)求每生产一台合格仪器的概率;
(2)用表示每月生产合格仪器的台数,求的分布列和数学期望;
(3)若生产一台仪器合格可盈利10万元,不合格要亏损3万元,求该厂每月的期望盈利额.
题型:不详难度:| 查看答案
某家具城进行促销活动,促销方案是:顾客每消费1000元,便可以获得奖券一张,每张奖券中奖的概率为,若中奖,则家具城返还顾客现金200元. 某顾客购买一张价格为3400元的餐桌,得到3张奖券.
(I)求家具城恰好返还该顾客现金200元的概率;
(II)(文科)求家具城至少返还该顾客现金200元的概率.
(理科)设该顾客有张奖券中奖,求的分布列,并求的数学
期望E.
题型:不详难度:| 查看答案
甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。
(1)求甲获得这次比赛胜利的概率;
(2)设 表示从第3局开始到比赛结束所进行的局数,求 的分布列及数学期望。
题型:不详难度:| 查看答案
某项竞赛分别为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是,且各阶段通过与否相互独立.
(I)求该选手在复赛阶段被淘汰的概率;
(II)设该选手在竞赛中回答问题的个数为,求的分布列、数学期望和方差.
题型:不详难度:| 查看答案
袋子里有大小相同的3个红球和4个黑球,今从袋子里随机取球.
  (Ⅰ)若有放回地摸出4个球,求取出的红球数不小于黑球数的概率
  (Ⅱ)若无放回地摸出4个球,
①求取出的红球数ξ的概率分布列和数学期望;
②求取出的红球数不小于黑球数的概率,并比较的大小.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.