题目
题型:不详难度:来源:
(1)求甲答对试题数的分布列及数学期望;
(2)求甲、乙两人至少有一人入选的概率.
答案
(2)甲、乙两人于少有一人考试合格的概率为
解析
4分
的分布列为
| 0 | 1 | 2 | 3 |
P |
6分
(2)设甲、乙两人考试合格的事件分别为A、B,则
9分
因为事件A、B相互独立,甲、乙两人考试均不合格的概率为
甲、乙两人至少有一人考试合格的概率为
答:甲、乙两人于少有一人考试合格的概率为 12分
另解:甲、乙两人至少有一个考试合格的概率为
答:甲、乙两人于少有一人考试合格的概率为
核心考点
试题【甲、乙两人同时参加奥运志愿者的选拔赛,已知在备选的10道题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
甲、乙两位小学生各有2008年奥运吉祥物“福娃”5个(其中“贝贝”、“晶晶”、“欢欢”、
“迎迎”和“妮妮各一个”),现以投掷一个骰子的方式进行游戏,规则如下:当出现向上的点数是奇数时,甲赢得乙一个福娃;否则乙赢得甲一个福娃,规定掷骰子的次数达9次时,或在此前某人已赢得所有福娃时游戏终止.记游戏终止时投掷骰子的次数为
(1)求掷骰子的次数为7的概率;
(2)求的分布列及数学期望E.
在篮球比赛中,罚球命中1次得1分,不中得0分,如果运动员甲罚球命中的概率是0.8,记运动员甲罚球1次的得分为X,则E(X)等于( )