当前位置:高中试题 > 数学试题 > 离散型随机变量均值与方差 > 甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲8281797895889384乙929580758380...
题目
题型:不详难度:来源:
甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:

82
81
79
78
95
88
93
84

92
95
80
75
83
80
90
85

(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;
(3)(理)若将频率视为概率,对甲同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.
答案
(1)作出茎叶图如下:

 

9 8
7
5
8 4 2 1
8
0 0 3 5
5 3
9
0 2 5

(2)派甲参赛比较合适.理由如下:
=(70×2+80×4+90×2+8+9+1+2+4+8+3+5)
=85,
=(70×1+80×4+90×3+5+0+0+3+5+0+2+5)=85,
s2甲=[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,
s2乙=[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41.
,s2甲<s2乙,
∴甲的成绩较稳定,派甲参寒比较合适.
注:本小题的结论及理由均不唯一,如果考生能从统计学的角度分析,给出其他合理回答,同样正确.如派乙参赛比较合适.理由如下:
从统计的角度看,甲获得85分以上(含85分)的概率P1=,
乙获得85分以上(含85分)的概率P2==.
∵P2>P1,∴派乙参赛比较合适.
(理)(3)记“甲同学在一次数学竞赛中成绩高于80分”为事件A,则P(A)==.
随机变量ξ的可能取值为0、1、2、3,且ξ~,
∴P(ξ=k)=Ck3k3k,k=0,1,2,3.
所以变量ξ的分布列为
ξ
0
1
2
3
P





Eξ=0×+1×+2×+3×=

解析

核心考点
试题【甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲8281797895889384乙929580758380】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
已知随机变量X的分布列是:
X
4
a
9
10
P
0.3
0.1
b
0.2
且EX=7.5,则a的值为(  )
A.5       B.6       C.7       D.8
题型:不详难度:| 查看答案
(本小题满分13分)
重庆电视台的一个智力游戏节目中,有一道将中国四大名著A、B、C、D与它们的作者
连线的题目,每本名著只能与一名作者连线,每名作者也只能与一本名著连线.每连对
一个得3分,连错得分,一名观众随意连线,将他的得分记作ξ.
(Ⅰ)求该观众得分ξ为正数的概率;
(Ⅱ)求ξ的分布列及数学期望.
题型:不详难度:| 查看答案
(本小题满分12分)
张先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1L2两条路线(如图),L1路线上有A1A2A3三个路口,各路口遇到红灯的概率均为L2路线上有B1B2两个路口,各路口遇到红灯的概率依次为
(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;
(Ⅱ)若走L2路线,求遇到红灯次数的数学期望;
(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生分析上述两条路线中,选择
哪条上班路线更好些,并说明理由.

题型:不详难度:| 查看答案

本小题满分12分)
红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。
(Ⅰ)求红队至少两名队员获胜的概率;
(Ⅱ)用表示红队队员获胜的总盘数,求的分布列和数学期望.
题型:不详难度:| 查看答案

(本小题满分12分)
根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立。
(Ⅰ)求该地1为车主至少购买甲、乙两种保险中的1种的概率;
Ⅱ)X表示该地的100为车主中,甲、乙两种保险都不购买的车主数,求X的期望。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.