当前位置:高中试题 > 数学试题 > 离散型随机变量均值与方差 > 某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):...
题目
题型:不详难度:来源:
某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

(1)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”,求从这16人随机选取3人,至多有1人是“极幸福”的概率;
(2)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“极幸福”的人数,求的分布列及数学期望.
答案
(1);(2)分布列详见解析,.
解析

试题分析:本题考查茎叶图的读法和期望及分布列问题,考查学生的分析能力和计算能力.第一问,至多有1人是“极幸福”,包含2种情况:有1人是“极幸福”,有0人是“极幸福”,这一问利用公式计算,较简单;第二问,对事件进行分析是本问的关键,先求出选1人为“极幸福”的概率,利用,利用二项分布计算出每种情况下的概率,这部分是关键,以下的分布列和期望都需要用这些数.
试题解析:(1)设表示所取3人中有个人是“极幸福”,至多有1人是“极幸福”记为事件
所以.  (4分)
(2)的可能取值为0,1,2,3.




分布列为


令解:的可能取值为0,1,2,3.

分布列为

所以.    (12分)
核心考点
试题【某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
一个袋子中装有6个红球和4个白球,假设每一个球被摸到的可能性是相等的.
(Ⅰ)从袋子中摸出3个球,求摸出的球为2个红球和1个白球的概率;
(Ⅱ)从袋子中摸出两个球,其中白球的个数为,求的分布列和数学期望.
题型:不详难度:| 查看答案
某企业招聘工作人员,设置三组测试项目供参考人员选择,甲、乙、丙、丁、戊五人参加招聘,其中甲、乙两人各自独立参加组测试,丙、丁两人各自独立参加组测试.已知甲、乙两人各自通过测试的概率均为,丙、丁两人各自通过测试的概率均为.戊参加组测试,组共有6道试题,戊会其中4题.戊只能且必须选择4题作答,答对3题则竞聘成功.
(Ⅰ)求戊竞聘成功的概率;
(Ⅱ)求参加组测试通过的人数多于参加组测试通过的人数的概率;
(Ⅲ)记组测试通过的总人数为,求的分布列和期望.
题型:不详难度:| 查看答案
(14分)如图所示,机器人海宝按照以下程序运行

1从A出发到达点B或C或D,到达点B、C、D之一就停止;
②每次只向右或向下按路线运行;
③在每个路口向下的概率
④到达P时只向下,到达Q点只向右.
(1)求海宝过点从A经过M到点B的概率,求海宝过点从A经过N到点C的概率;
(2)记海宝到点B、C、D的事件分别记为X=1,X=2,X=3,求随机变量X的分布列及期望.
题型:不详难度:| 查看答案
在一个盒子里装有6枝圆珠笔,其中3枝一等品,2枝二等品,1枝三等品.
(1)从盒子里任取3枝恰有1枝三等品的概率多大?;
(2)从盒子里任取3枝,设为取出的3枝里一等品的枝数,求的分布列及数学期望.
题型:不详难度:| 查看答案
学校为了使运动员顺利参加运动会,招募了8名男志愿者和12名女志愿者,这20名志愿者的身高如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.

 

 
 
8
16
5
8
9
 
 
8
7
6
17
2
3
5
5
6
7
4
2
18
0
1
2
 
 
 
 
1
19
0
 
 
 
 
(Ⅰ)用分层抽样的方法从“高个子”和“非高个子”中抽取5人,如果从这5人中随机选2人,那么至少有1人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中随机选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.