当前位置:高中试题 > 数学试题 > 离散型随机变量均值与方差 > 将一枚硬币抛掷6次,求正面次数与反面次数之差ξ的概率分布列,并求出ξ的期望Eξ....
题目
题型:不详难度:来源:
将一枚硬币抛掷6次,求正面次数与反面次数之差ξ的概率分布列,并求出ξ的期望Eξ.
答案
0
解析
设正面的次数是η,则η服从二项分布B(6,0.5),概率分布为P(η=k)=0.56,k=0,1,…,6,且Eη=3.而反面次数为6-η,ξ=η-(6-η)=2η-6.
于是ξ的概率分布为
P(ξ=2k-6)=P(η=k)=0.56,k=0,1,…,6.
故E(ξ)=E(2η-6)=2E(η)-6=2×3-6=0.
核心考点
试题【将一枚硬币抛掷6次,求正面次数与反面次数之差ξ的概率分布列,并求出ξ的期望Eξ.】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.
假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.
题型:不详难度:| 查看答案
甲、乙两支排球队进行比赛,约定先胜局者获得比赛的胜利,比赛随即结束。除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是。假设各局比赛结果相互独立。
(1)分别求甲队以胜利的概率;
(2)若比赛结果为求,则胜利方得分,对方得分;若比赛结果为,则胜利方得分、对方得分。求乙队得分的分布列及数学期望。
题型:不详难度:| 查看答案
在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名选手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.
(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(2)X表示3号歌手得到观众甲、乙、丙的票数之和, 求X的分布列和数学期望.
题型:不详难度:| 查看答案
一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4.从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).
(1)求取出的4张卡片中, 含有编号为3的卡片的概率.
(2)再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.
题型:不详难度:| 查看答案
设袋子中装有个红球,个黄球,个蓝球,且规定:取出一个红球得1分,
取出一个黄球2分,取出蓝球得3分。
(1)当时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量为取出此2球所得分数之和,.求分布列;
(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量为取出此球所得分数.若,求
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.