当前位置:高中试题 > 数学试题 > 独立重复试验 > 袋子里有大小相同但标有不同号码的3个红球和4个黑球,从袋子里随机取出4个球.⑴求取出的红球数的概率分布列;⑵若取到每个红球得2分,取到每个黑球得1分,求得分不...
题目
题型:不详难度:来源:
袋子里有大小相同但标有不同号码的3个红球和4个黑球,从袋子里随机取出4个球.
⑴求取出的红球数的概率分布列;
⑵若取到每个红球得2分,取到每个黑球得1分,求得分不超过5分的概率.
答案
(1)
ξ
0
1
2
3
P




(2)
解析

试题分析:解:⑴∵的可能取值为0,1,2,3,且的分布列是一个超几何分布列.
的分布列为
ξ
0
1
2
3
P




(2)∵得分,

∴得分不超过5分的概率为
点评:解决的关键是根据超几何分布列来得到随机变量的分布列的求解,以及对应的概率值。属于基础题。
核心考点
试题【袋子里有大小相同但标有不同号码的3个红球和4个黑球,从袋子里随机取出4个球.⑴求取出的红球数的概率分布列;⑵若取到每个红球得2分,取到每个黑球得1分,求得分不】;主要考察你对独立重复试验等知识点的理解。[详细]
举一反三
2011年4月28日世界园艺博览会将在陕西西安浐灞生态区举行,为了接待来自国内外的各界人士,需招募一批志愿者,要求志愿者不仅要有一定的气质,还需有丰富的人文、地理、历史等文化知识。志愿者的选拔分面试和知识问答两场,先是面试,面试通过后每人积60分,然后进入知识问答。知识问答有A,B,C,D四个题目,答题者必须按A,B,C,D顺序依次进行,答对A,B,C,D四题分别得20分、20分、40分、60分,每答错一道题扣20分,总得分在面试60分的基础上加或减。答题时每人总分达到100分或100分以上,直接录用不再继续答题;当四道题答完总分不足100分时不予录用。
假设志愿者甲面试已通过且第二轮对A,B,C,D四个题回答正确的概率依次是,且各题回答正确与否相互之间没有影响.
(Ⅰ) 用X表示志愿者甲在知识问答结束时答题的个数,求X的分布列和数学期望;
(Ⅱ)求志愿者甲能被录用的概率.
题型:不详难度:| 查看答案
为了防止受到核污染的产品影响我国民众的身体健康,要求产品进入市场前必须进行两轮核放射检测,只有两轮都合格才能进行销售。已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响。
(1)求该产品不能销售的概率
(2)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利-80元)。已知一箱中有4件产品,记可销售的产品数为X,求X的分布列,并求一箱产品获利的均值。
题型:不详难度:| 查看答案
将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在
下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是
(Ⅰ)求小球落入袋中的概率
(Ⅱ)在容器入口处依次放入4个小球,记为落入袋中的小球个数,试求的概率和的数学期望
题型:不详难度:| 查看答案
某种产品按质量标准分成五个等级,等级编号依次为1,2,3,4,5.现从一批产品中随机抽取20件,对其等级编号进行统计分析,得到频率分布表如下:
等级
1
2
3
4
5
频率
a
0.2
0.45
b
c
(1)若所抽取的20件产品中,等级编号为4的恰有3件,等级编号为5的恰有2件,求a,b,c的值;
(2)在(1)的条件下,将等级编号为4的3件产品记为xl,x2,x3,等级编号为5的2件产品记为yl ,y2,现从xl,x2,x3,yl,y2这5件产品中任取两件(假定每件产品被取出的可能性相同),写出所有可能的结果,并求这两件品的级编号恰好相同的概率。
题型:不详难度:| 查看答案
甲、乙两队在进行一场五局三胜制的排球比赛中,规定先赢三局的队获胜,并且比赛就此结束,现已知甲、乙两队每比赛一局,甲队获胜的概率为,乙队获胜的概率为,且每局比赛的胜负是相互独立的,问:
(1)甲队以获胜的概率是多少?
(2)乙队获胜的概率是多少?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.