当前位置:高中试题 > 数学试题 > 离散型随机变量及其分布列 > 某工厂生产两批产品,第一批的10件产品中优等品有4件;第二批的5件产品中优等品有3件,现采用分层抽样方法从两批产品中共抽取3件进行质量检验.(I)求从两批产品各...
题目
题型:不详难度:来源:
某工厂生产两批产品,第一批的10件产品中优等品有4件;第二批的5件产品中优等品有3件,现采用分层抽样方法从两批产品中共抽取3件进行质量检验.
(I)求从两批产品各抽取的件数;
(Ⅱ)记ξ表示抽取的3件产品中非优等品的件数,求ξ的分布列及数学期望.
答案
(I)∵第一批有10件产品,第二批有5件产品,
现采用分层抽样方法从两批产品中共抽取3件进行质量检验,
∴每个个体被抽到的概率是
3
10+5
=
1
5

∴第一批应抽取
1
5
×10
=2件,
第二批应抽取
1
5
×5
=1件;
(Ⅱ)∵ξ表示抽取的3件产品中非优等品的件数,
∴ξ的可能取值为0,1,2,3
P(ξ=0)=
C24
C210
×
C13
C15
=
6
75

P(ξ=1)=
C14
C16
C13
C210
C15
+
C24
C12
C210
C15
=
28
75

P(ξ=3)=
C26
C12
C210
C15
=
10
75

P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=
31
75

∴ξ的分布列如下:

Eξ=0×
6
75
+1×
28
75
+2×
31
75
+3×
10
75
=
8
5
核心考点
试题【某工厂生产两批产品,第一批的10件产品中优等品有4件;第二批的5件产品中优等品有3件,现采用分层抽样方法从两批产品中共抽取3件进行质量检验.(I)求从两批产品各】;主要考察你对离散型随机变量及其分布列等知识点的理解。[详细]
举一反三
下列表中可以作为离散型随机变量的分布列是(   )
A.
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
ξ101
P
盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个.先从盒子中任取2个球(假设取到每个球的可能性相同),设取到两个球的编号之和为ξ.
(1)求随机变量ξ的分布列;
(2)求两个球编号之和大于6的概率.
已知ξ的分布列为:
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
ξ012
Pm
1
2
1
4
从某学校高三年级共800名男生中随机抽取50名作为样本测量身高.据测量,被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160)第二组[160,165);…第八组[190,195].下图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.
(Ⅰ)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;
(Ⅱ)在上述样本中从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x,y,求满足“|x-y|≤5”的事件的概率;
(Ⅲ)在上述样本中从最后三组中任取3名学生参加学校篮球队,用ξ表示从第八组中取到的学生人数,求ξ的分布列和数学期望.
现有甲、乙两个靶,某射手进行射击训练,每次射击击中甲靶的概率是p1,每次射击击中乙靶的概率是p2,其中p1>p2,已知该射手先后向甲、乙两靶各射击一次,两次都能击中与两次都不能击中的概率分别为
8
15
1
15
.该射手在进行射击训练时各次射击结果互不影响.
(Ⅰ)求p1,p2的值;
(Ⅱ)假设该射手射击乙靶三次,每次射击击中目标得1分,未击中目标得0分.在三次射击中,若有两次连续击中,而另外一次未击中,则额外加1分;若三次全击中,则额外加3分.记η为该射手射击三次后的总的分数,求η的分布列;
(Ⅲ)某研究小组发现,该射手在n次射击中,击中目标的次数X服从二项分布.且射击甲靶10次最有可能击中8次,射击乙靶10次最有可能击中7次.试探究:如果X:B(n,p),其中0<p<1,求使P(X=k)(0≤k≤n)最大自然数k.