甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品. (1)从甲箱中任取2个产品,求这2个产品都是次品的概率; (2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率. |
(1)从甲箱中任取2个产品的事件数为 C82==28, 这2个产品都是次品的事件数为C32=3. ∴这2个产品都是次品的概率为. (2)设事件A为“从乙箱中取出的一个产品是正品”,事件B1为“从甲箱中取出2个产品都是正品”,事件B2为“从甲箱中取出1个正品1个次品”,事件B3为“从甲箱中取出2个产品都是次品”,则事件B1、事件B2、事件B3彼此互斥. P(B1)==,P(B2)==, P(B3)==, P(A|B1)=,P(A|B2)=,P(A|B3)=, ∴P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3). =×+×+×=. |
核心考点
试题【甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品.(1)从甲箱中任取2个产品,求这2个产品都是次品的概率;(2)若从甲箱中任取2个产品放入乙箱】;主要考察你对
古典概型的概念及概率等知识点的理解。
[详细]
举一反三
某班共有40名学生,其中只有一对双胞胎,若从中一次随机抽查三位学生的作业,则这对双胞胎的作业同时被抽中的概率是 ______.(结果用最简分数表示) |
有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1、2、3,现在从中任取三面,它们的颜色和号码均不相同的概率为 ______. |
星空电视台组织篮球技能大赛,每名选手都要进行运球、传球、投篮三项比赛,每个选手在各项比赛中获得合格与不合格的机会相等,且互不影响.现有A、B、C、D、E、F六位选手参加比赛,电视台根据比赛成绩对前2名进行表彰奖励. (Ⅰ)求A至少获得一个合格的概率; (Ⅱ)求A与B只有一个受到表彰奖励的概率. |
从3男2女这5位舞蹈选手中,随机(等可能)抽出2人参加舞蹈比赛,恰有一名女选手的概率是______. |
有甲、乙两箱产品,甲箱共装8件,其中一等品5件,二等品3件,乙箱共装4件,其中一等品3件,二等品1件.现采取分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两箱中共抽取产品3件. (1)求抽取的3件全部是一等品的概率. (2)用δ表示抽取的3件产品为二等品的件数,求δ的分布列及数学期望. |