当前位置:高中试题 > 数学试题 > 两个互斥事件的概率加法公式 > 一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没...
题目
题型:广州模拟难度:来源:
一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.
(1)求这箱产品被用户接收的概率;
(2)记抽检的产品件数为ξ,求ξ的分布列和数学期望.
答案
(1)设“这箱产品被用户接收”为事件A,P(A)=
8×7×6
10×9×8
=
7
15

即这箱产品被用户接收的概率为
7
15
.                              
(2)ξ的可能取值为1,2,3.                                       
P(ξ=1)=
2
10
=
1
5
,P(ξ=2)=
8
10
×
2
9
=
8
45
,P(ξ=3)=
8
10
×
7
9
=
28
45

∴ξ的概率分布列为:
核心考点
试题【一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没】;主要考察你对两个互斥事件的概率加法公式等知识点的理解。[详细]
举一反三
题型:不详难度:| 查看答案
题型:惠州模拟难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
ξ123              
P
1
5
8
45
28
45
在某次趣味运动会中,甲、乙、丙三名选手进行单循环赛(即每两人比赛一场),共赛三场,每场比赛胜者得1分,输者得0分,没有平局;在每一场比赛中,甲胜乙的概率为
1
3
,甲胜丙的概率为
1
4
,乙胜丙的概率为
1
3

(Ⅰ)求甲获得小组第一且丙获得小组第二的概率;
(Ⅱ)求三人得分相同的概率;
(Ⅲ)设在该小组比赛中甲得分数为ξ,求Eξ.
某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;
(Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元).求随机变量X的分布列和数学期望.魔方格
体育课上练习投篮,甲、乙两名学生在罚球线投球的命中率分别为
2
3
1
2
,每人投球3次.
(Ⅰ)求两人都恰好投进2球的概率;
(Ⅱ)求甲恰好赢乙1球的概率.
一对外国夫妇携带有白化病遗传基因,已知他们生出的小孩患有白化病的概率为
3
4
,不患此病的概率为
1
4
;他们生的孩子是男孩或女孩的概率均为
1
2
,现在已知该夫妇有三个孩子.
(I)求三个孩子是同性别的且都患病的概率P1(结果用最简分数表示);
(Ⅱ)求三个孩子中两个是患病男孩,一个是患病女孩的概率P2(结果用最简分数表示)
袋中有10个球,其中4个红球,6个白球,若取到1个红球记2分,取到1个白球记1分,那么从这10个球中取出4个,使总分不低于5分的取法有多少种?