2007年上海特奥会组委会准备从A、B两所大学中的7名优秀学生(3人来自A大学,4人来自B大学)中选取3人作为志愿者,则3人来自不同大学的概率是______. |
由题意,3人来自同一大学的概率为:P= 利用对立事件求解,P=1-=, 故答案为 |
核心考点
试题【2007年上海特奥会组委会准备从A、B两所大学中的7名优秀学生(3人来自A大学,4人来自B大学)中选取3人作为志愿者,则3人来自不同大学的概率是______.】;主要考察你对
随机事件的概率等知识点的理解。
[详细]
举一反三
设集合M={1,2,3,4,5,6},S1,S2,…,SK都是M的含两个元素的子集,从中任选两个Si,Sj,Si={ai,bi},Sj={aj,bj},(i≠j),i,j∈{1,2,3,…,k},则min{,}≠min{,},(min{x,y}表示两个数x,y中的较小者)的概率等于______. |
从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生的概率为______. |
已知一组抛物线y=ax2+bx+1,其中a为2、4、6、8中任取的一个数,b为1、3、5、7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x=1交点处的切线相互平行的概率是( ) |
甲、乙两位同学玩游戏,对于给定的实数a1,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把a1乘以2后再减去12;如果出现一个正面朝上,一个反面朝上,则把a1除以2后再加上12,这样就可以得到一个新的实数a2,对实数a2仍按上述方法进行一次操作,又得到一个新的实数a3,当a3>a1,甲获胜,否则乙获胜,若甲获胜的概率为,则a1的取值范围是( )A.(-∞,12] | B.[24,+∞) | C.(12,24) | D.(-∞,12]∪[24,+∞) |
|
某电视台的一个智力游戏节目中,有一道将四本由不同作者所著的外国名著A、B、C、D与它们的作者连线的题目,每本名著只能与一名作者连线,每名作者也只能与一本名著连线.每连对一个得3分,连错得-1分,一名观众随意连线,他的得分记作ξ. (1)求该观众得分ξ为非负的概率; (2)求ξ的分布列及数学期望. |