当前位置:高中试题 > 数学试题 > 随机事件的概率 > 设甲、乙、丙三人进行围棋比赛,每局两人参加,没有平局。在一局比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为。比赛顺序为:首先由甲和乙进行第一局的比赛,再...
题目
题型:不详难度:来源:
设甲、乙、丙三人进行围棋比赛,每局两人参加,没有平局。在一局比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为。比赛顺序为:首先由甲和乙进行第一局的比赛,再由获胜者与未参加比赛的选手进行第二局的比赛,依此类推,在比赛中,有选手获胜满两局就取得比赛的胜利,比赛结束。
(1)求只进行了三局比赛,比赛就结束的概率;
(2)记从比赛开始到比赛结束所需比赛的局数为,求的概率分布列和数学期望
答案
(1);
(2)的分布列为:

2
3
4
P




解析

试题分析:(1)只进行三局比赛,即丙获胜比赛就结束的概率为

(2)


的分布列为:

2
3
4
P




点评:典型题,统计中的抽样方法,频率分布表,概率计算及分布列问题,是高考必考内容及题型。古典概型概率的计算问题,关键是明确基本事件数,往往借助于“树图法”,做到不重不漏。
核心考点
试题【设甲、乙、丙三人进行围棋比赛,每局两人参加,没有平局。在一局比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为。比赛顺序为:首先由甲和乙进行第一局的比赛,再】;主要考察你对随机事件的概率等知识点的理解。[详细]
举一反三
哈尔滨市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为
 
优秀
非优秀
合计
甲班
10
 
 
乙班
 
30
 
    合计
 
 
110
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:

0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828

题型:不详难度:| 查看答案
分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计).
(1)求方程有实根的概率;
(2)求的分布列和数学期望;
(3)求在先后两次出现的点数中有5的条件下,方程有实根的概率.
题型:不详难度:| 查看答案
从一个装有3个红小球,2个蓝小球的盒子中取出两个小,颜色不同的概率是      .
题型:不详难度:| 查看答案
设随机变量X的分布列P(=1,2,3,4,5).
(1)求常数的值;
(2)求P
(3)求
题型:不详难度:| 查看答案
若甲以10发6中,乙以10发5中的命中率打靶,两人各射击一次,则他们都中靶的概率是(     )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.