当前位置:高中试题 > 数学试题 > 随机事件的概率 > 某研究性学习小组对昼夜温差与某种子发芽数的关系进行研究,他们分别记录了四天中每天昼夜温差与每天100粒种子浸泡后的发芽数,得到如下资料:时间第一天第二天第三天第...
题目
题型:不详难度:来源:
某研究性学习小组对昼夜温差与某种子发芽数的关系进行研究,他们分别记录了四天中每天昼夜温差与每天100粒种子浸泡后的发芽数,得到如下资料:
时间
第一天
第二天
第三天
第四天
温差(℃)
9
10
8
11
发芽数(粒)
33
39
26
46
(1)求这四天浸泡种子的平均发芽率;
(2)若研究的一个项目在这四天中任选2天的种子发芽数来进行,记发芽的种子数分别为m,n(m<n),则以(m,n)的形式列出所有的基本事件,并求“m,n满足”的事件A的概率.
答案
(Ⅰ)这四天的平均发芽率为
(Ⅱ)事件“”的概率为
解析

试题分析:(Ⅰ)四天的发芽总数为33+39+26+46=144
这四天的平均发芽率为             4份
(Ⅱ)任选两天种子的发芽数为,因为
的形式列出所有的基本事件有:(26,33)、(26,39)、(26,46)、(33,39)、(33,46)、(39,46),所有基本事件总数为6.
设“满足”为事件
则事件包含的基本事件为(33,46)、(39,46)
所以
故事件“”的概率为                   12分
点评:中档题,古典概型概率的计算,随机变量的分布列及其数学期望,是近些年来高考重点考查的知识内容,往往以应用题的面目出现,综合考查学习能力,计算能力,阅读理解能力。解题过程中,要注意审清题意,明确算法,细心计算。往往利用排列组合知识,有时借助于“树图法”“坐标法”计算事件数。
核心考点
试题【某研究性学习小组对昼夜温差与某种子发芽数的关系进行研究,他们分别记录了四天中每天昼夜温差与每天100粒种子浸泡后的发芽数,得到如下资料:时间第一天第二天第三天第】;主要考察你对随机事件的概率等知识点的理解。[详细]
举一反三
口袋内装有个大小相同的红球、白球和黑球,其中有个红球,从中摸出个球,若摸出白球的概率为,则摸出黑球的概率为____________.
题型:不详难度:| 查看答案
(本小题满分12分)
一个不透明的袋子中装有4个形状相同的小球,分别标有不同的数字2,3,4,,现从袋中随机摸出2个球,并计算摸出的这2个球上的数字之和,记录后将小球放回袋中搅匀,进行重复试验。记A事件为“数字之和为7”.试验数据如下表
摸球总次数
10
20
30
60
90
120
180
240
330
450
“和为7”出现的频数
1
9
14
24
26
37
58
82
109
150
“和为7”出现的频率
0.10
0.45
0.47
0.40
0.29
0.31
0.32
0.34
0.33
0.33
(参考数据:
(Ⅰ)如果试验继续下去,根据上表数据,出现“数字之和为7”的频率将稳定在它的概率附近。试估计“出现数字之和为7”的概率,并求的值;
(Ⅱ)在(Ⅰ)的条件下,设定一种游戏规则:每次摸2球,若数字和为7,则可获得奖金7元,否则需交5元。某人摸球3次,设其获利金额为随机变量元,求的数学期望和方差。
题型:不详难度:| 查看答案
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为,求的概率.
题型:不详难度:| 查看答案
某一部件由四个电子元件按如图方式连结而成,已知每个元件正常工作的概率为,且每个元件能否正常工作相互独立,那么该部件正常工作的概率为                 .

题型:不详难度:| 查看答案
为了调査某大学学生在某天上网的时间,随机对lOO名男生和100名女生进行了不记名的问卷调查.得到了如下的统计结果:
表l:男生上网时间与频数分布表

表2:女生上网时间与频数分布表

(I)从这100名男生中任意选出3人,其中恰有1人上网时间少于60分钟的概率;
(II)完成下面的2X2列联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”?
表3:

附:

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.