当前位置:高中试题 > 数学试题 > 用样本的频率分布估计总体分布 > 某公司生产产品A,产品质量按测试指标分为:指标大于或等于90为一等品,大于或等于小于为二等品,小于为三等品,生产一件一等品可盈利50元,生产一件二等品可盈利元,...
题目
题型:不详难度:来源:
某公司生产产品A,产品质量按测试指标分为:指标大于或等于90为一等品,大于或等于小于为二等品,小于为三等品,生产一件一等品可盈利50元,生产一件二等品可盈利元,生产一件三等品亏损10元.现随机抽查熟练工人甲和新工人乙生产的这种产品各100件进行检测,检测结果统计如下:
测试指标







3
7
20
40
20
10

5
15
35
35
7
3
 
根据上表统计得到甲、乙两人生产产品A为一等品、二等品、三等品的频率分别估计为他们生产产品A为一等品、二等品、三等品的概率.
(1)计算甲生产一件产品A,给工厂带来盈利不小于30元的概率;
(2)若甲一天能生产20件产品A,乙一天能生产15件产品A,估计甲乙两人一天生产的35件产品A中三等品的件数.
答案
(1);(2)参考解析
解析

试题分析:(1)由题意可得100件产品中甲有10件指标小于80,所以给工厂带来盈利小于30元的概率为.所以甲生产一件产品A,给工厂带来盈利不小于30元的概率为.
(2)依题意可得甲、乙生产一件产品A是三等品的件数分别为10,20.所以三等品的概率分别是.所以甲一天能生产20件产品A,乙一天能生产15件产品A中的三等品件数为2,3.即可得甲乙两人一天生产的35件产品A中三等品的件数.
试题解析:(1)甲生产一件产品A,给工厂带来盈利不小于30元的概率为:
                             6分
(2)估计甲一天生产的20件产品A中有件三等品,         8分
估计乙一天生产的15件产品A中有件三等品,           10分
所以估计甲乙两人一天生产的35件产品A中共有5件三等品.         12分
核心考点
试题【某公司生产产品A,产品质量按测试指标分为:指标大于或等于90为一等品,大于或等于小于为二等品,小于为三等品,生产一件一等品可盈利50元,生产一件二等品可盈利元,】;主要考察你对用样本的频率分布估计总体分布等知识点的理解。[详细]
举一反三
已知方程y=bx+a是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,(x10,y10)的回归方程,则“”是“(x0,y0)满足线性回归方程y=bx+a”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件

题型:不详难度:| 查看答案
空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,解代表空气污染越严重:
PM2.5日均浓度
0~35
35~75
75~115
115~150
150~250
>250
空气质量级别
一级
二级
三级
四级
五级
六级
空气质量类别


轻度污染
中度污染
重度污染
严重污染
 

某市2013年3月8日—4月7日(30天)对空气质量指数PM2.5进行检测,获得数据后整理得到如下条形图:
(1)估计该城市一个月内空气质量类别为良的概率;
(2)从空气质量级别为三级和四级的数据中任取2个,求至少有一天空气质量类别为中度污染的概率.
题型:不详难度:| 查看答案
某校高三有四个班,某次数学测试后,学校随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.
(1)问各班被抽取的学生人数各为多少人?
(2)求平均成绩;
(3)在抽取的所有学生中,任取一名学生,求分数不低于90分的概率.

题型:不详难度:| 查看答案
某学校为了选拔学生参加“XX市中学生知识竞赛”,先在本校进行选拔测试(满分150分),若该校有100名学生参加选拔测试,并根据选拔测试成绩作出如图所示的频率分布直方图.
(1)根据频率分布直方图,估算这100名学生参加选拔测试的平均成绩;
(2)若通过学校选拔测试的学生将代表学校参加市知识竞赛,知识竞赛分为初赛和复赛,初赛中每人最多有5次答题机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.假设参赛者甲答对每一个题的概率都是,求甲在初赛中答题个数的分布列和数学期望.

题型:不详难度:| 查看答案
为了调查某厂2000名工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量,产品数量的分组区间为,得到如题(16)图所示的频率分布直方图。已知生产的产品数量在之间的工人有6位.
(1)求
(2)工厂规定从生产低于20件产品的工人中随机的选取2位工人进行培训,求这2位工人不在同一组的概率.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.