当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 给定椭圆C:x2a2+y2b2=1(a>b>0),称圆心在坐标原点O,半径为a2+b2的圆是椭圆C的“伴随圆”. 若椭圆C的一个焦点为F2(2,0),其短轴上的...
题目
题型:不详难度:来源:
给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),称圆心在坐标原点O,半径为


a2+b2
的圆是椭圆C的“伴随圆”. 若椭圆C的一个焦点为F2


2
,0),其短轴上的一个端点到F2距离为


3

(1)求椭圆C及其“伴随圆”的方程;
(2)若过点P(0,m)(m<0)的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为2


2
,求m的值;
(3)过椭圆C的“伴椭圆”上一动点Q作直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,当直线l1,l2都有斜率时,试判断直线l1,l2的斜率之积是否为定值,并说明理由.
答案
(1)由题意可知:c=


2
,a=


3
,∴b2=a2-c2=1.
∴椭圆方程为:
x2
3
+y2=1


a2+b2
=2

∴椭圆C的“伴椭圆”方程为:x2+y2=4.
(2)设直线方程为:y=kx+m
∵截椭圆C的“伴随圆”所得的弦长为2


2

∴圆心到直线的距离d=
|m|


1+k2

d2+(


2
)2=r2
,∴d2=2,∴m2=2(1+k2).(*)





x2+3y2=3
y=kx+m
得(1+3k2)x2+6mkx+3m2-3=0,
∵直线l与椭圆相切,
∴△=1+3k2-m2=0,
把(*)代入上式得m2=4,∵m<0,解得m=-2.
∴m=-2.
(3)设Q(x0,y0),直线y-y0=k(x-x0),
由(2)可知1+3k2-m2=1+3k2-(y0-kx0)2=0
(3-
x20
)k2+2y0x0k+1-
y20
=0
,∴k1k2=
1-
y20
3-
x20

又∵Q(x0,y0)在“伴椭圆”上,∴
x20
+
y20
=4
,∴3-
x20
=
y20
-1

∴k1k2=-1为定值.
核心考点
试题【给定椭圆C:x2a2+y2b2=1(a>b>0),称圆心在坐标原点O,半径为a2+b2的圆是椭圆C的“伴随圆”. 若椭圆C的一个焦点为F2(2,0),其短轴上的】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
一束光线从点F1(-1,0)出发,经直线l:2x-y+3=0上一点P反射后,恰好穿过点F2(1,0).      
(Ⅰ)求点F1关于直线l的对称点F1′的坐标;
(Ⅱ)求以F1、F2为焦点且过点P的椭圆C的方程;
(Ⅲ)设直线l与椭圆C的两条准线分别交于A、B两点,点Q为线段AB上的动点,求点Q 到F2的距离与到椭圆C右准线的距离之比的最小值,并求取得最小值时点Q的坐标.
题型:不详难度:| 查看答案
已知椭圆
x2
a2
+
y2
b2
=1
({a>0,b>0})与抛物线y2=2px(p>0)有相同的焦点,点A是两曲线的交点,且AF⊥x轴,则椭圆的离心率是(  )
A.
1+


5
2
B.


3
-1
C.


2
-1
D.


2
-
1
2
题型:重庆模拟难度:| 查看答案
若直线y=kx+4+2k与曲线y=


4-x2
有两个交点,则k的取值范围是(  )
A.[1,+∞)B.[-1,-
3
4
C.(
3
4
,1]
D.(-∞,-1]
题型:不详难度:| 查看答案
设F(1,0),点M在x轴上,点P在y轴上,且


MN
=2


MP


PM


PF

(1)当点P在y轴上运动时,求点N的轨迹C的方程;
(2)设A(x1,y1),B(x2,y2),D(x3,y3)是曲线C上的点,且|


AF
|,|


BF
|,|


DF
|
成等差数列,当AD的垂直平分线与x轴交于点E(3,0)时,求点B的坐标.
题型:河西区一模难度:| 查看答案
如图,已知点B是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的短轴位于x轴下方的端点,过B作斜率为1的直线交椭圆于点M,点P在y轴上,且PMx轴,


BP


BM
=9,若点P的坐标为(0,t),则t的取值范围是(  )
A.0<t<3B.0<t≤3C.0<t<
3
2
D.0<t≤
3
2
魔方格
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.