当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 直线y=kx-2与抛物线y2=8x交于A、B两点,且AB中点的横坐标为2,则k的值为(  )A.-1或2B.2C.-1D.1+3...
题目
题型:不详难度:来源:
直线y=kx-2与抛物线y2=8x交于A、B两点,且AB中点的横坐标为2,则k的值为(  )
A.-1或2B.2C.-1D.1+


3
答案
∵直线y=kx-2与抛物线y2=8x交于A、B两点,∴k≠0.
设A(x1,y1),B(x2,y2).





y=kx-2
y2=8x
,得k2x2-(4k+8)x+4=0,
由△=[-(4k+8)]2-16k2=64k+64>0,得k>-1.
根据根与系数关系有 x1+x2=
4k+8
k2

而A、B中点的横坐标为2,
4k+8
k2
=4,解得k=-1(舍)或k=2.
所以,使直线y=kx-2与抛物线y2=8x交于A、B两点且AB中点的横坐标为2的k的值为2.
故选B.
核心考点
试题【直线y=kx-2与抛物线y2=8x交于A、B两点,且AB中点的横坐标为2,则k的值为(  )A.-1或2B.2C.-1D.1+3】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0),若过其右焦点F作倾斜角为45°的直线l与双曲线右支有两个不同的交点,则双曲线的离心率的范围是(  )
A.[


2
,+∞)
B.(1,


2
)
C.[2,+∞)D.(1,2)
题型:不详难度:| 查看答案
过原点的直线l与双曲线
x2
4
-
y2
3
=-1有两个交点,则直线l的斜率的取值范围是(  )
A.(-


3
2


3
2
B.(-∞,-


3
2
)∪(


3
2
,+∞)
C.[-


3
2


3
2
]
D.(-∞,-


3
2
]∪[


3
2
,+∞)
题型:不详难度:| 查看答案
已知直线y=kx+1与椭圆
x2
5
+
y2
m
=1
恒有公共点,则实数m的取值范围为(  )
A.m≥1B.m≥1,或0<m<1
C.0<m<5,且m≠1D.m≥1,且m≠5
题型:不详难度:| 查看答案
已知动点P与双曲线x2-y2=1的两个焦点F1,F2的距离之和为定值,且cos∠F1PF2的最小值为-
1
3
,求动点P的轨迹方程.
题型:不详难度:| 查看答案
已知B为抛物线y2=2px(p>0)上的动点(除顶点),过B作抛物线准线的垂线,垂足计
为C.连接CO并延长交抛物线于A,(O为原点)
(1)求证AB过定点Q.
(2)若M(1,


P
),试确定B点的位置,使|BM|+|BQ|取得最小值,并求此最小值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.