当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 过椭圆x25+y24=1的右焦点作一条斜率为2的直线与椭圆交于A、B两点,O为坐标原点,则△OAB的面积为______....
题目
题型:海南难度:来源:
过椭圆
x2
5
+
y2
4
=1
的右焦点作一条斜率为2的直线与椭圆交于A、B两点,O为坐标原点,则△OAB的面积为______.
答案
由题意知





4x2+5y2-20=0
y=2(x-1)

解方程组得交点A(0,-2),B(
5
3
4
3
)

SOAB=
1
2
•OF•|y1-y2|=
1
2
×1×|
4
3
+2|=
5
3

答案:
5
3
核心考点
试题【过椭圆x25+y24=1的右焦点作一条斜率为2的直线与椭圆交于A、B两点,O为坐标原点,则△OAB的面积为______.】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
求与椭圆
x2
49
+
y2
24
=1
有公共焦点,且离心率e=
5
4
的双曲线的方程.
题型:不详难度:| 查看答案
已知椭圆C:
x2
25
+
y2
16
=1
,直线l:ax+by-4a+2b=0,则直线l与椭圆C的公共点有______个.
题型:不详难度:| 查看答案
直线y=x+3与曲线
y2
9
-
x|x|
4
=1
的交点个数为(  )
A.4个B.1个C.2个D.3个
题型:不详难度:| 查看答案
若直线l:x+my+c=0与抛物线y2=2x交于A、B两点,O点是坐标原点.
(1)当m=-1,c=-2时,求证:OA⊥OB;
(2)若OA⊥OB,求证:直线l恒过定点;并求出这个定点坐标.
(3)当OA⊥OB时,试问△OAB的外接圆与抛物线的准线位置关系如何?证明你的结论.
题型:不详难度:| 查看答案
直线l与椭圆
x2
2
+y2=1
交于不同的两点P1、P2,线段P1P2的中点为P,设直线l的斜率为k1(k1≠0),直线OP的斜率为k2(O点为坐标原点),则k1•k2的值为(  )
A.-
1
2
B.-1C.-2D.不能确定
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.