当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 若直线mx+ny=4和⊙O:x2+y2=4相交,则点P(m,n)与椭圆C:x24+y23=1的位置关系为(  )A.点P在椭圆C内B.点P在椭圆C上C.点P在椭...
题目
题型:不详难度:来源:
若直线mx+ny=4和⊙O:x2+y2=4相交,则点P(m,n)与椭圆C:
x2
4
+
y2
3
=1的位置关系为(  )
A.点P在椭圆C内B.点P在椭圆C上
C.点P在椭圆C外D.以上三种均有可能
答案
∵直线mx+ny=4和⊙O:x2+y2=4相交,∴圆心(0,0)到直线的距离d<r.
4


m2+n2
<2
,化为m2+n2>4.
∴m2>4-n2
m2
4
+
n2
3
4-n2
4
+
n2
3
=1+
n2
12
>1,
∴点P(m,n)在椭圆C:
x2
4
+
y2
3
=1的外部.
故选:C.
核心考点
试题【若直线mx+ny=4和⊙O:x2+y2=4相交,则点P(m,n)与椭圆C:x24+y23=1的位置关系为(  )A.点P在椭圆C内B.点P在椭圆C上C.点P在椭】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知抛物线C:x2=2py过点P(1,
1
2
)
,直线l交C于A,B两点,过点P且平行于y轴的直线分别与直线l和x轴相交于点M,N.
(1)求p的值;
(2)是否存在定点Q,当直线l过点Q时,△PAM与△PBN的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=


5
5
,过F1的直线交椭圆于M、N两点,且△MNF2周长为4


5

(Ⅰ)求椭圆E的方程;
(Ⅱ)已知过椭圆中心,且斜率为k(k≠0)的直线与椭圆交于A、B两点,P是线段AB的垂直平分线与椭圆E的一个交点,若△APB的面积为
40
9
,求k的值.
题型:不详难度:| 查看答案
已知抛物线C的顶点在原点,经过点A(1,2),其焦点F在y轴上,直线y=kx+2交抛物线C于A,B两点,M是线段AB的中点,过M作x轴的垂线交抛物线C于点N.
(Ⅰ)求抛物线C的方程;
(Ⅱ)证明:抛物线C在点N处的切线与AB平行.
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为


3
2
,两个焦点分别为F1和F2,椭圆C上一点到F1和F2的距离之和为12.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点B是椭圆C的上顶点,点P,Q是椭圆上;异于点B的两点,且PB⊥QB,求证直线PQ经过y轴上一定点.
题型:不详难度:| 查看答案
已知平面内一动点P到点F(2,0)的距离比点P到y轴的距离大2,
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F且斜率为2


2
的直线交轨迹C于A(x1,y1),B(x2,y2)(x1<x2)两点,P(x3,y3)(x3≥0)为轨迹C上一点,若


OP
=


OA


OB
,求λ的值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.