当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 直角坐标平面上点P与点的距离比它到直线的距离小2,则点P的轨迹方程是            ....
题目
题型:不详难度:来源:
直角坐标平面上点P与点的距离比它到直线的距离小2,则点P的轨迹方程是            .
答案

解析

核心考点
试题【直角坐标平面上点P与点的距离比它到直线的距离小2,则点P的轨迹方程是            .】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
(本小题12分)
已知椭圆的长轴长为,离心率为分别为其左右焦点.一动圆过点,且与直线相切.
(Ⅰ)(ⅰ)求椭圆的方程; (ⅱ)求动圆圆心轨迹的方程;
(Ⅱ) 在曲线上有两点M、N,椭圆C上有两点P、Q,满足共线,共线,且,求四边形面积的最小值.
题型:不详难度:| 查看答案
已知抛物线的焦点与双曲线的一个焦点重合,则该双曲线的离心率为           (   )
A.B.C.D.3

题型:不详难度:| 查看答案
(本题满分13 分)
已知椭圆的右焦点F 与抛物线y2 =" 4x" 的焦点重合,短轴长为2.椭圆的右准线l与x轴交于E,过右焦点F 的直线与椭圆相交于A、B 两点,点C 在右准线l上,BC//x 轴.
(1)求椭圆的标准方程,并指出其离心率;
(2)求证:线段EF被直线AC 平分.
题型:不详难度:| 查看答案
(本题满分12分)
设椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
x
3
—2
4


y

0
—4

-
 
(1)求的标准方程;
(2)设直线与椭圆交于不同两点,请问是否存在这样的
直线过抛物线的焦点?若存在,求出直线的方程;若不存在,说明理由.
题型:不详难度:| 查看答案
已知抛物线与双曲线有相同的焦点,点是两曲线的一个交点,且轴,若为双曲线的一条斜率大于0的渐近线,则的斜率可以在下列给出的某个区间内,该区间可以是(   )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.