当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > :已知椭圆的左右焦点为,抛物线C:以F2为焦点且与椭圆相交于点M,直线F1M与抛物线C相切。(Ⅰ)求抛物线C的方程和点M的坐标;(Ⅱ)过F2作抛物线C的两条互相...
题目
题型:不详难度:来源:
:已知椭圆的左右焦点为,抛物线C:以F2为焦点且与椭圆相交于点M,直线F1M与抛物线C相切。
(Ⅰ)求抛物线C的方程和点M的坐标;
(Ⅱ)过F2作抛物线C的两条互相垂直的弦AB、DE,设弦AB、DE的中点分别为F、N,求证直线FN恒过定点;
答案
:略
解析
:解:(Ⅰ)由椭圆方程得半焦距        …………1分
所以椭圆焦点为                    …………2分
又抛物线C的焦点为  ……3分
,直线的方程为……4分
代入抛物线C得
与抛物线C相切,
      …………7分
(Ⅱ)设的方程为 代入,得,…8分
,则 ………9分
,    ………10分
所以,将换成      …………12分
由两点式得的方程为               …………13分
,所以直线恒过定点         …………14分
核心考点
试题【:已知椭圆的左右焦点为,抛物线C:以F2为焦点且与椭圆相交于点M,直线F1M与抛物线C相切。(Ⅰ)求抛物线C的方程和点M的坐标;(Ⅱ)过F2作抛物线C的两条互相】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
(本小题满分16分)如图,在直角坐标系中,三点在轴上,原点和点分别是线段的中点,已知为常数),平面上的点

(1)试求点的轨迹的方程;
(2)若点在曲线上,求证:点一定在某圆上;
(3)过点作直线,与圆相交于两点,若点恰好是线段的中点,试求直线的方程。
题型:不详难度:| 查看答案

若原点到直线的距离等于的半焦距的最小值为             (   )
A.2B.3C.5D.6

题型:不详难度:| 查看答案
已知为椭圆的两个焦点,过的直线交椭圆于A、B两点,若,则=_______
题型:不详难度:| 查看答案
如图,抛物线形拱桥的顶点距水面2米时,测得拱桥内水面宽为12米,当水面升高1米后,则拱桥内水面的宽度为_____米.

题型:不详难度:| 查看答案
(本小题满分14分)
已知椭圆C的长轴长与短轴长之比为,焦点坐标分别为F1(-2,0),F2(2,0),O是坐标原点.
(1)求椭圆C的标准方程;
(2)已知A(-3,0),B(3,0)P是椭圆C上异于A、B的任意一点,直线AP、BP分别交于y轴于M、N两点,求的值;
(3)在(2)的条件下,若G(s,o)、H(k,o)且,(s<k),分别以线段OG、OH为边作两个正方形,求这两上正方形的面积和的最小值,并求出取得最小值时G、H两点的坐标.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.