当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知抛物线C的顶点在坐标原点,焦点在x轴上,直线与抛物线C相交于A,B两点,若是AB的中点,则抛物线C的方程为_______________....
题目
题型:不详难度:来源:
已知抛物线C的顶点在坐标原点,焦点在x轴上,直线与抛物线C相交
于A,B两点,若是AB的中点,则抛物线C的方程为_______________.
答案

解析

核心考点
试题【已知抛物线C的顶点在坐标原点,焦点在x轴上,直线与抛物线C相交于A,B两点,若是AB的中点,则抛物线C的方程为_______________.】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
((本小题满分12分)
已知椭圆C:(常数),P是曲线C上的动点,M是曲线C的右
顶点,定点A的坐标为(2,0).
(1)若M与A重合,求曲线C的焦点坐标.
(2)若,求|PA|的最大值与最小值.
(3)若|PA|最小值为|MA|,求实数的取值范围.
题型:不详难度:| 查看答案
(本题10分)已知抛物线C:,过原点O作抛物线C的切线使切点P在第一象限,
(1)求k的值;
(2)过点P作切线的垂线,求它与抛物线C的另一个交点Q的坐标。
题型:不详难度:| 查看答案
(本小题满分14分)
已知椭圆G与双曲线有相同的焦点,且过点
(1)求椭圆G的方程;
(2)设是椭圆G的左焦点和右焦点,过的直线与椭圆G相交于A、B两点,请问的内切圆M的面积是否存在最大值?若存在,求出这个最大值及直线的方程,若不存在,请说明理由.
题型:不详难度:| 查看答案
已知点是直线上任意一点,以
焦点的椭圆过点.记椭圆离心率关于的函数为,那么下列结论正确的是(  )                                                                                        
A.一一对应B.函数无最小值,有最大值
C.函数是增函数D.函数有最小值,无最大值

题型:不详难度:| 查看答案
(本小题满分12分)已知点,过点作抛物线的切线,切点在第二象限,如图.
(Ⅰ)求切点的纵坐标;
(Ⅱ)若离心率为的椭圆 恰好经过切点,设切线交椭圆的另一点为,记切线的斜率分别为,若,求椭圆方程.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.