当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知分别是圆锥曲线和的离心率,设,则的取值范围是              ....
题目
题型:不详难度:来源:
已知分别是圆锥曲线的离心率,设,则的取值范围是              .
答案
.
解析
,.
核心考点
试题【已知分别是圆锥曲线和的离心率,设,则的取值范围是              .】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知直线的右焦点F,且交椭圆C于A,B两点.
(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)对椭圆C,若直线L交y轴于点M,且,当m变化时,求的值.
题型:不详难度:| 查看答案
(本小题满分12分)在平面直角坐标系xOy中,已知定点A(-2,0)、B(2,0),M是动点,且直线MA与直线MB的斜率之积为,设动点M的轨迹为曲线C.
(I)求曲线C的方程;
(II)过定点T(-1,0)的动直线与曲线C交于P,Q两点,若,证明:为定值.
题型:不详难度:| 查看答案
已知定点A(0,1)、B(0,-1)、C(1,0),动点P满足·=k||2.
(1) 求动点P的轨迹方程,并说明方程表示的曲线.
(2) 当k=2时,求|2|的最大值和最小值
题型:不详难度:| 查看答案
设平面内两定点,直线PF1PF2相交于点P,且它们的斜率之积为定值
(Ⅰ)求动点P的轨迹C1的方程;
(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交曲线C1PQ两点,求面积的最大值.
题型:不详难度:| 查看答案
椭圆E的中心在坐标原点O,焦点在x轴上,离心率为,点P(1,)和AB都在椭圆E上,且m(mR).
(1)求椭圆E的方程及直线AB的斜率;
(2)当m=-3时,证明原点O是△PAB的重心,并求直线AB的方程.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.