当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > (12分)已知双曲线与椭圆有相同焦点,且经过点,求该双曲线方程,并求出其离心率、渐近线方程,准线方程。...
题目
题型:不详难度:来源:
(12分)已知双曲线与椭圆有相同焦点,且经过点
求该双曲线方程,并求出其离心率、渐近线方程,准线方程。
答案
,离心率,渐近线,准线
解析

试题分析:椭圆的焦点为,设双曲线方程为
过点,则,得,而
,双曲线方程为

点评:本题求双曲线方程还可利用定义先求得
核心考点
试题【(12分)已知双曲线与椭圆有相同焦点,且经过点,求该双曲线方程,并求出其离心率、渐近线方程,准线方程。】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
(12分)已知椭圆中心在原点,一个焦点为,且长轴长与短轴长的比是
(1)求椭圆的方程;(5分)
(2)是否存在斜率为的直线,使直线与椭圆有公共点,且原点与直线的距离等于4;若存在,求出直线的方程,若不存在,说明理由。(7分)。
题型:不详难度:| 查看答案
(12分)已知过点的动直线与抛物线相交于两点,当直线的斜率是时,
(1)求抛物线的方程;(5分)
(2)设线段的中垂线在轴上的截距为,求的取值范围。(7分)
题型:不详难度:| 查看答案
已知圆过椭圆的两焦点,与椭圆有且仅有两个与圆相切 ,与椭圆相交于两点记
(1)求椭圆的方程
(2)求的取值范围;
(3)求的面积S的取值范围.
题型:不详难度:| 查看答案
抛物线上一点到焦点的距离为1,则点的纵坐标是  (    )
A.0B.C.D.

题型:不详难度:| 查看答案
中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的标准方程为______________________________
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.