当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知双曲线,直线与该双曲线只有一个公共点,则k =                .(写出所有可能的取值)...
题目
题型:不详难度:来源:
已知双曲线,直线与该双曲线只有一个公共点,
k =                .(写出所有可能的取值)
答案

解析

试题分析:也可以通过数形结合思想来得到,当直线的斜率位于-1,和1之间的时候,平行于渐近线必定有一个交点,另外就是相切,利用判别式等于零,得到k的值为,那么可知满足题意的直线有4条,且斜率为
点评:解决的关键是根据直线与双曲线的联立方程组,通过求方程组的解来的得到,属于基础题。
核心考点
试题【已知双曲线,直线与该双曲线只有一个公共点,则k =                .(写出所有可能的取值)】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知M (-3,0)﹑N (3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m (mm0),点P的轨迹加上MN两点构成曲线C.
求曲线C的方程并讨论曲线C的形状;
(2) 若,曲线C过点Q (2,0) 斜率为的直线与曲线C交于不同的两点ABAB中点为R,直线OR (O为坐标原点)的斜率为,求证 为定值;
(3) 在(2)的条件下,设,且,求y轴上的截距的变化范围.
题型:不详难度:| 查看答案
如图,是平面的斜线段,为斜足。若点在平面内运动,使得的面积为定值,则动点的轨迹是(   )
A.圆B.椭圆
C.一条直线D.两条平行直线

题型:不详难度:| 查看答案
已知椭圆,则以点为中点的弦所在直线方程为__________________。
题型:不详难度:| 查看答案
已知椭圆(a>b>0)的离心率为,以原点为圆心,椭圆短半轴长半径的圆与直线y=x+ 相切.
(1)求椭圆的方程;
(2)设直线与椭圆在轴上方的一个交点为是椭圆的右焦点,试探究以
直径的圆与以椭圆长轴为直径的圆的位置关系.
题型:不详难度:| 查看答案
过双曲线的左焦点,作倾斜角为的直线FE交该双曲线右支于点P,若,且则双曲线的离心率为(   )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.