当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 在平面斜坐标系中,点的斜坐标定义为:“若 (其中分别为与斜坐标系的轴,轴同方向的单位向量),则点的坐标为”.若且动点满足,则点在斜坐标系中的轨迹方程为A.B.C...
题目
题型:不详难度:来源:
在平面斜坐标系,点的斜坐标定义为:“若 (其中分别为与斜坐标系的轴,轴同方向的单位向量),则点的坐标为”.若且动点满足,则点在斜坐标系中的轨迹方程为
A.B.
C.D.

答案
D
解析

试题分析:解答:解:设M(x,y),∵F1(-1,0),F2(1,0),∴由定义知|MF1|=-[(x+1)+y],|MF2|=-[(x-1)+y],因为,那么可知∴(x+1)2+y2+2(x+1)×y× =(x-1)2+y2+2(x-1)×y×,整理得,故答案为D。
点评:本题考查新定义,考查轨迹方程等基础知识,考查运算求解能力,属于中档题.
核心考点
试题【在平面斜坐标系中,点的斜坐标定义为:“若 (其中分别为与斜坐标系的轴,轴同方向的单位向量),则点的坐标为”.若且动点满足,则点在斜坐标系中的轨迹方程为A.B.C】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知椭圆过点,椭圆左右焦点分别为,上顶点为为等边三角形.定义椭圆C上的点的“伴随点”为.
(1)求椭圆C的方程;
(2)求的最大值;
(3)直线l交椭圆CAB两点,若点AB的“伴随点”分别是PQ,且以PQ为直径的圆经过坐标原点O.椭圆C的右顶点为D,试探究ΔOAB的面积与ΔODE的面积的大小关系,并证明.
题型:不详难度:| 查看答案
已知抛物线p>0)的准线与圆相切,则p的值为(    )
A.10B.6 C.D.

题型:不详难度:| 查看答案
已知点P是双曲线C左支上一点,F1F2是双曲线的左、右两个焦点,且PF1PF2PF2与两条渐近线相交于M,N两点(如图),点N恰好平分线段PF2,则双曲线的离心率是(   )
A.B.2C.D.

题型:不详难度:| 查看答案
平面内与两定点连线的斜率之积等于非零常数的点的轨迹,加上 两点,所成的曲线可以是圆,椭圆或双曲线.
(Ⅰ)求曲线的方程,并讨论的形状与值的关系;
(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,若曲线的斜率为的切线与曲线相交于两点,且为坐标原点),求曲线的方程.
题型:不详难度:| 查看答案
已知抛物线和点为抛物线上的点,则满足的点有( )个。
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.