当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知抛物线y2=-x与直线y=k(x+1)交于A、B两点.(1)求证:OA⊥OB;(2)当DAOB的面积等于时,求k的值. ...
题目
题型:不详难度:来源:
已知抛物线y2=-x与直线y=k(x+1)交于A、B两点.
(1)求证:OA⊥OB;
(2)当DAOB的面积等于时,求k的值. 
答案
(1)证明见试题解析;(2).
解析

试题分析:(1)要证明,可设出两点的坐标分别为,则,而从哪里来呢?考虑到两点在抛物线上,因此,下面的目标是求,我们把直线方程与抛物线方程联立,消去,得到关于的二次方程,正是这个二次方程的解,利用韦达定理,可得,从而证得结论;(2)如果直接利用,则,会发现很难把这个根式用表示出来,我们换一种思路,直线轴于点,因此分成两个三角形,从而有,这里,正好能利用(1)结论中的结论.
试题解析:(1)由方程组得:
,由韦达定理得:

,即.4分

(2)设直线与交于点,则


.10分
核心考点
试题【已知抛物线y2=-x与直线y=k(x+1)交于A、B两点.(1)求证:OA⊥OB;(2)当DAOB的面积等于时,求k的值. 】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
设椭圆C:过点(0,4),离心率为
(Ⅰ)求C的方程;(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度.
题型:不详难度:| 查看答案
已知椭圆是其左右焦点,离心率为,且经过点.
(1)求椭圆的标准方程;
(2)若分别是椭圆长轴的左右端点,为椭圆上动点,设直线斜率为,且,求直线斜率的取值范围;
(3)若为椭圆上动点,求的最小值.
题型:不详难度:| 查看答案
已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为
(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围.
题型:不详难度:| 查看答案
若对于给定的负实数,函数的图象上总存在点C,使得以C为圆心,1为半径的圆上有两上不同的点到原点的距离为2,则的取值范围为        .
题型:不详难度:| 查看答案
在直角坐标系中,已知中心在原点,离心率为的椭圆E的一个焦点为圆的圆心.
⑴求椭圆E的方程;
⑵设P是椭圆E上一点,过P作两条斜率之积为的直线,当直线都与圆相切时,求P点坐标.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.