当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 如图所示,在直角坐标系xOy中,点P到抛物线C:y2=2px(p>0)的准线的距离为.点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB被直线O...
题目
题型:不详难度:来源:
如图所示,在直角坐标系xOy中,点P到抛物线C:y2=2px(p>0)的准线的距离为.点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB被直线OM平分.

(1)求p,t的值;
(2)求△ABP面积的最大值.
答案
(1)    (2)
解析

解:(1)由题意知
(2)由(1)知M(1,1),
直线OM的方程为y=x,

设A(x1,y1),B(x2,y2),线段AB的中点为Q(m,m).
由题意知,
设直线AB的斜率为k(k≠0).

得(y1-y2)(y1+y2)=x1-x2,
故k·2m=1,
所以直线AB的方程为y-m=(x-m),
即x-2my+2m2-m=0.
消去x,
整理得y2-2my+2m2-m=0,
所以Δ=4m-4m2>0,
y1+y2=2m,y1y2=2m2-m.
从而|AB|=·|y1-y2|=·.
设点P到直线AB的距离为d,
则d=.
设△ABP的面积为S,则
S=|AB|·d=|1-2(m-m2)|·.
由Δ=4m-4m2>0,得0<m<1.
令u=,0<u≤,则S=u(1-2u2).
设S(u)=u(1-2u2),0<u≤,则S′(u)=1-6u2.
由S′(u)=0,得u=,
因此S(u)在单调递增,在单调递减,
所以S(u)max=S=.
故△ABP面积的最大值为.
核心考点
试题【如图所示,在直角坐标系xOy中,点P到抛物线C:y2=2px(p>0)的准线的距离为.点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB被直线O】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
如图所示,直线l:y=x+b与抛物线C:x2=4y相切于点A.

(1)求实数b的值;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
题型:不详难度:| 查看答案
如图,椭圆过点P(1, ),其左、右焦点分别为F1,F2,离心率e=,M,N是直线x=4上的两个动点,且·=0.

(1)求椭圆的方程;
(2)求|MN|的最小值;
(3)以MN为直径的圆C是否过定点?请证明你的结论。
题型:不详难度:| 查看答案
已知定点A(-2,0)和B(2,0),曲线E上任一点P满足|PA|-|PB|=2.
(1)求曲线E的方程;
(2)延长PB与曲线E交于另一点Q,求|PQ|的最小值;
(3)若直线l的方程为x=a(a≤),延长PB与曲线E交于另一点Q,如果存在某一位置,使得从PQ的中点R向l作垂线,垂足为C,满足PC⊥QC,求a的取值范围。
题型:不详难度:| 查看答案
,分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆,两点, 到直线的距离为,连接椭圆的四个顶点得到的菱形面积为.
(1)求椭圆的方程;
(2)已知点,设是椭圆上的一点,过两点的直线轴于点,若, 求的取值范围;
(3)作直线与椭圆交于不同的两点,,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.
题型:不详难度:| 查看答案
已知点在椭圆:上,以为圆心的圆与轴相切于椭圆的右焦点,且,其中为坐标原点.
(1)求椭圆的方程;
(2)已知点,设是椭圆上的一点,过两点的直线轴于点,若, 求直线的方程;
(3)作直线与椭圆:交于不同的两点,,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.