当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知椭圆的两个焦点分别为和,离心率.(1)求椭圆的方程;(2)设直线()与椭圆交于、两点,线段 的垂直平分线交轴于点,当变化时,求面积的最大值....
题目
题型:不详难度:来源:
已知椭圆的两个焦点分别为,离心率.
(1)求椭圆的方程;
(2)设直线)与椭圆交于两点,线段 的垂直平分线交轴于点,当变化时,求面积的最大值.
答案
(1);(2).
解析

试题分析:(1)求椭圆的标准方程,要找两个等式以确定,本题中有焦点为,说明,又有离心率,即,由此再加上可得结论;(2)直线与圆锥曲线相交问题,又涉及到交点弦,因此我们都是把直线方程(或设出)与椭圆方程联立方程组,然后消去(有时也可消去)得关于(或)的一元二次方程,再设交点为坐标为,则可得,(用表示),同时这个方程中判别式(直线与椭圆相交),可得出的取值范围.由此可由公式是直线的斜率得出弦长,中点横坐标为,进而可写出的中垂线方程,与相交的交点的坐标可得,于是有,这是关于的一个函数,利用函数的知识或不等式的性质可求得最大值.
试题解析:(1)由已知椭圆的焦点在轴上,
,     2分
椭圆的方程为     4分
(2),消去
直线与椭圆有两个交点,,可得(*)     6分

,弦长,     8分
中点, 设
  ,      11分

时,,   14分
(或:
.
当且仅当时成立,.(用其它解法相应给分)
核心考点
试题【已知椭圆的两个焦点分别为和,离心率.(1)求椭圆的方程;(2)设直线()与椭圆交于、两点,线段 的垂直平分线交轴于点,当变化时,求面积的最大值.】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知椭圆的右焦点为,短轴的一个端点的距离等于焦距.
(1)求椭圆的方程;
(2)过点的直线与椭圆交于不同的两点,是否存在直线,使得△与△的面积比值为?若存在,求出直线的方程;若不存在,说明理由.
题型:不详难度:| 查看答案
如图,已知分别是椭圆的四个顶点,△是一个边长为2的等边三角形,其外接圆为圆
(1)求椭圆及圆的方程;
(2)若点是圆劣弧上一动点(点异于端点),直线分别交线段,椭圆于点,直线交于点
(ⅰ)求的最大值;
(ⅱ)试问:..,两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.

题型:不详难度:| 查看答案
抛物线的焦点为F,过F作直线交抛物线于A、B两点,设(  )
A.4       B.8       C.       D.1
题型:不详难度:| 查看答案
直线与抛物线交于两点A、B,如果弦的长度.
⑴求的值;
⑵求证:(O为原点)。
题型:不详难度:| 查看答案
已知椭圆的中心在坐标原点,对称轴为坐标轴,焦点在轴上,有一个顶点为
(1)求椭圆的方程;
(2)过点作直线与椭圆交于两点,线段的中点为,求直线的斜率的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.