当前位置:高中试题 > 数学试题 > 抛物线的几何性质 > 已知M是抛物线y2=4x上的一点,F是抛物线的焦点,线段MF的中点P到y轴的距离为2,则|PF|=______....
题目
题型:不详难度:来源:
已知M是抛物线y2=4x上的一点,F是抛物线的焦点,线段MF的中点P到y轴的距离为2,则|PF|=______.
答案
依题意,设M在抛物线的准线x=-1上的射影为M′,线段MF的中点P在y轴上的射影为P′,在抛物线的准线x=-1上的射影为P″,作图如下:

∵抛物线y2=4x的焦点F(1,0),准线方程为x=-1,设F在抛物线的准线上的射影为F′,则|FF′|=2;
依题意PP″为梯形FF′M′M的中位线,
∵|PP′|=2,
∴|PP″|=2-(-1)=3,
又|FF′|=2,
∴2|PP″|=|FF′|+|MM′|,即2×3=2+|MM′|,
∴|MM′|=4,又|MF|=|MM′|,
∴|MF|=4,又P为MF的中点,
∴|PF|=2.
故答案为:2.
核心考点
试题【已知M是抛物线y2=4x上的一点,F是抛物线的焦点,线段MF的中点P到y轴的距离为2,则|PF|=______.】;主要考察你对抛物线的几何性质等知识点的理解。[详细]
举一反三
已知P是以F1,F2为焦点的椭圆
x2
a2
+
y2
b2
=1(a>b>0)上的一点,若PF1⊥PF2,tan∠PF1F2=
1
2
,则此椭圆的离心率为(  )
A.
1
2
B.
2
3
C.
1
3
D.


5
3
题型:不详难度:| 查看答案
过抛物线y2=2px(p>0)的焦点F作倾斜角为90的直线交抛物线于A,B两点,若线段AB的长为8,则抛物线的准线方程为______.
题型:不详难度:| 查看答案
如图,已知AB是过抛物线y2=2px(p>0)的焦点的弦,F为抛物线的焦点,点A(x1,y1),B(x2,y2).
求证:
(1)|AB|=x1+x2+p;
(2)y1y2=-p2,x1x2=
p2
4

(3)(理科)直线的倾斜角为θ时,求弦长|AB|.
(3)(文科)当p=2,直线AB的倾斜角为
π
4
时,求弦长|AB|.
题型:不详难度:| 查看答案
(2q14•蓟县一模)抛物线x2=4y的焦点坐标是(  )
A.(1,0)B.(0,1)C.(
1
16
,0
D.(0,
1
16
题型:不详难度:| 查看答案
已知抛物线C:y2=-2px(p>0)上横坐标为-3的一点到准线的距离为4.
(1)求p的值;
(2)设动直线y=x+b与抛物线C相交于A、B两点,问在直线l:y=2上是否存在与b的取值无关的定点M,使得∠AMB被直线l平分?若存在,求出点M的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.